Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010230-9    https://doi.org/10.11896/cldb.24010230
  无机非金属及其复合材料 |
数据驱动下的沥青混合料材料组成设计方法
刘朝晖, 盛佳豪, 柳力*
长沙理工大学交通运输工程学院,长沙 410114
A Data-Driven Approach to Asphalt Mixture Material Composition Design
LIU Zhaohui, SHENG Jiahao, LIU Li*
School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 9918KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索沥青混合料材料组成设计新思路,通过构建材料性能数据库,提出了一种数据驱动下的沥青混合料材料组成设计方法。首先以沥青种类、空隙率等沥青混合料材料组成作为模型输入,以动态模量、动稳定度等混合料性能作为模型输出,分别构建了反向传播(Back propagation,BP)神经网络、极限梯度提升(Extreme gradient boosting,XGBoost)和随机森林(Random forest,RF)三种机器学习预测模型,并建立了MySQL材料性能数据库;然后运用数据库结构化SQL查询语句,以沥青混合料性能为搜索条件,通过反向匹配获得沥青混合料材料组成参考值,提出了数据驱动下的沥青混合料材料组成设计方法;最后通过实例分析验证了设计方法的可行性。研究结果表明:三种机器学习模型中XGBoost较BP神经网络决定系数R2提升了0.03~0.40,较RF提升了0.01~0.08,适用于沥青混合料性能预测;并通过实例分析与室内试验相结合的方法,验证了基于数据库反向匹配实现沥青混合料材料组成设计的可行性。研究成果可为揭示沥青混合料与其材料组成之间的内在关联、指导沥青混合料材料组成设计提供重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘朝晖
盛佳豪
柳力
关键词:  道路工程  沥青混合料  材料组成设计  机器学习  数据库    
Abstract: To explore the new ideas of asphalt mixture material composition design, the work proposes a data-driven asphalt mixture material composition design method based on the material performance database. Firstly, three machine learning prediction models, namely, BP neural network, XGBoost and Random forest, were constructed with asphalt type, air void ratio and other asphalt mixture material composition as model inputs, and dynamic modulus, dynamic stability and other mixture properties as model outputs, and a MySQL material performance database was established with the help of them. Then, using the structured SQL query statement of the database, the asphalt mixture performance is used as the query condition, and the database is reverse-matched to obtain the reference value of the material composition of asphalt mixtures, to put forward the data-driven design method of asphalt mixture material composition. Finally, the feasibility of the design method is verified by example analysis. The results show that XGBoost has the best prediction ability among the three machine learning models, and its coefficient of determination R2 is improved by 0.03—0.40 compared with BP neural network, and 0.01—0.08 compared with RF, which can be better used for predicting the performance of asphalt mixtures;and the feasibility of realizing the design of asphalt mixture composition based on reverse database matching is verified through the combination of case study and indoor experiments. The results of the study provide important references for revealing the performance correlation between asphalt mixtures and their material composition and guiding the design of asphalt mixture material composition.
Key words:  road engineering    asphalt mixture    material composition design    machine learning    database
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  U414  
基金资助: 国家重点研发计划(2021YFB2601000);长沙市杰出创新青年培养计划项目(kq2306009);国家自然科学基金(52208423;52278437);湖南省教育厅科学研究重点项目(24A0224);长沙理工大学研究生科研创新项目(CSLGCX23019)
通讯作者:  *柳力,长沙理工大学交通运输工程学院副教授、博士研究生导师。2017年6月毕业于长沙理工大学,获道路与铁道工程博士学位。主要从事路面结构与新材料方面的研究工作。805296712@qq.com   
作者简介:  刘朝晖,长沙理工大学二级教授、博士研究生导师。2007年12月,获长沙理工大学道路与铁道工程博士学位。主要从事路面结构与材料等方面的研究工作。
引用本文:    
刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
LIU Zhaohui, SHENG Jiahao, LIU Li. A Data-Driven Approach to Asphalt Mixture Material Composition Design. Materials Reports, 2025, 39(4): 24010230-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010230  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010230
1 Xiang P C, Gao L, Jia F Y. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(12), 26 (in Chinese).
向鹏成, 高璐, 贾富源. 重庆交通大学学报(自然科学版), 2022, 41(12), 26.
2 Liu L, Zhu X M, Liu Z H, et al. Materials Reports, 2023, 37(10), 66 (in Chinese).
柳力, 朱晓明, 刘朝晖, 等. 材料导报, 2023, 37(10), 66.
3 Ju P, Wang H, Ding Y N. Highways & Transportation in Inner Mongolia, 2021(5), 43 (in Chinese).
鞠鹏, 王浩, 丁寅南. 内蒙古公路与运输, 2021(5), 43.
4 Zhang J, Guo N S, Lyu X, et al. Materials Reports, 2023, 37(20), 263 (in Chinese).
张军, 郭乃胜, 吕欣, 等. 材料导报, 2023, 37(20), 263.
5 Ma T, Luan Y C, He L, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 1 (in Chinese).
马涛, 栾英成, 何亮, 等. 交通运输工程学报, 2023, 23(2), 1.
6 Dang J T, Cheng Y, Gong L. Transport Energy Conservation & Environmental Protection, 2022, 18(3), 101 (in Chinese).
党江涛, 程愿, 弓雷. 交通节能与环保, 2022, 18(3), 101.
7 Tan L, Chen F T, Shi L M. Hunan Communication Science and Techno-logy, 2023, 49(3). 86 (in Chinese).
谭利, 尘福涛, 史立民. 湖南交通科技, 2023, 49(3), 86.
8 Luo S, Zhang X T, Wang Q Y, et al. Journal of Highway and Transportation Research and Development, 2023, 40(4), 61 (in Chinese).
罗升, 张新天, 王清晏, 等. 公路交通科技, 2023, 40(4), 61.
9 Yang X Y, Chen G Y, Zhu J T, et al. Industrial Construction, 2024, 54(9), 209 (in Chinese).
杨兴宇, 陈光耀, 朱俊潼, 等. 工业建筑, 2024, 54(9), 209.
10 Liu Z H, Liu L, Li W B, et al. China Journal of Highway and Transport, 2022, 35(7), 18 (in Chinese).
刘朝晖, 柳力, 李文博, 等. 中国公路学报, 2022, 35(7), 18.
11 Liang C, Xu X, Chen H, et al. Applied Sciences, 2021, 11(2), 835.
12 Zhao R, Gong J, Zheng Y, et al. Materials, 2022, 15(9), 3361.
13 Meng F Y, Pan X D. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(S1), 535 (in Chinese).
孟繁宇, 潘晓东. 吉林大学学报(工学版), 2013, 43(S1), 535.
14 Huang W, Zhou L, Ge P, et al. Material Reports, 2021, 35(15), 15026 (in Chinese).
黄炜, 周烺, 葛培, 等. 材料导报, 2021, 35(15), 15026.
15 Zhang H, Yuan J Z, Cao X L, et al. Material Reports, 2015, 29(14), 148 (in Chinese).
张浩, 袁军座, 曹现雷, 等. 材料导报, 2015, 29(14), 148.
16 Wang Z H, Liu Y F, Wang T, et al. Computational Materials Science, 2023, 231, 112579.
17 Chang Y C, Chang K H, Wu G J. Applied Soft Computing, 2018, 73, 914.
18 Deng X Z, Ye A S, Zhong J S, et al. Energy Reports, 2022, 8, 8661.
19 Cheng W Q, Yuan D B, Xiong P, et al. Acta Scientiae Circumstantiae, 2023, 43(11), 144 (in Chinese).
程婉清, 袁定波, 熊鹏, 等. 环境科学学报, 2023, 43(11), 144.
20 Zeng B, Lyu Q R, Kou L, et al. The Chinese Journal of Geological Ha-zard and Control, 2023, 34(4), 105 (in Chinese).
曾斌, 吕权儒, 寇磊, 等. 中国地质灾害与防治学报, 2023, 34(4), 105.
21 Li Y J. Modern Information Technology, 2023, 7(11), 80 (in Chinese).
李艳杰. 现代信息科技, 2023, 7(11), 80.
22 Zou M J. Application of high modulus asphalt concrete in BRT special road. Master’s Thesis, Changsha University of Science and Technology, China, 2023 (in Chinese).
邹明均. 高模量沥青混凝土在BRT专用道路的应用研究. 硕士学位论文, 长沙理工大学, 2023.
[1] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[5] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[6] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[7] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[8] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[9] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[10] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[11] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[12] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[13] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[14] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[15] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed