Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110048-13    https://doi.org/10.11896/cldb.23110048
  无机非金属及其复合材料 |
基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展
李歌*, 马子然, 闾菲, 彭胜攀, 佟振伟
北京低碳清洁能源研究院, 北京 102211
Advances in the Application of Machine Learning in Electrocatalytic Carbon Dioxide Reduction
LI Ge*, MA Ziran, LYU Fei, PENG Shengpan, TONG Zhenwei
National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
下载:  全 文 ( PDF ) ( 36545KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球能源需求不断增长,化石燃料资源有限和二氧化碳排放对气候变化的影响愈加严重,减少二氧化碳排放已迫在眉睫。基于绿电的电化学还原二氧化碳(CO2 RR)方法是缓解化石燃料消耗和温室气体排放的理想途径。传统催化剂的研发模式主要依赖实验试错方法,难以满足对高效催化剂的研发需求。快速发展的机器学习等数据科学技术为催化剂研发带来范式变革的契机。高通量计算结合机器学习已经成为近年来电催化剂配方设计中的重要手段之一。基于此,本文概述了近年来高通量计算结合机器学习指导催化剂开发的研究成果,包括催化剂设计的原理、模拟计算的策略以及机器学习模型的构建。通过将高通量计算和机器学习结合,可以加速催化剂设计过程,为CO2 RR催化剂的高效筛选和开发提供了新方法,拓宽人工智能在催化剂筛选设计中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李歌
马子然
闾菲
彭胜攀
佟振伟
关键词:  CO2 RR  密度泛函理论计算  机器学习  描述符  催化剂筛选    
Abstract: In the context of continuous growth in global energy demand, limited fossil fuel resources, and the increasingly serious impacts of carbon dio-xide emissions on the climate, urgent reductions in carbon dioxide emissions are required. The electrochemical reduction of carbon dioxide (CO2 RR) based on clean electricity is an ideal way to alleviate fossil fuel consumption and greenhouse gas emissions. Traditional catalyst research and development models mainly rely on experimental trial-and-error methods, which are time consuming and limited in their ability to meet the needs for efficient catalysts. The rapid development of data science technologies, such as machine learning, has brought paradigm changing opportunities for catalyst research and development. High-throughput computing combined with machine learning has become an important approach in the design of electrocatalysts in recent years. Thus, this paper reviews contemporary research on high-throughput computing combined with machine learning to guide catalyst development, including the principles of catalyst design, simulation calculation strategies, and the construction of machine learning models. The combination of high-throughput computing and machine learning should provide a new method for efficient screening and development of CO2 RR catalysts, which should broad the application of artificial intelligence in catalyst screening design.
Key words:  CO2 RR    density functional theory(DFT)    machine learning    descriptor    catalyst screening
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ151  
基金资助: 国家能源集团科技创新项目(ST930022006C)
通讯作者:  *李歌,博士,北京低碳清洁能源研究院CCUS中心教授级高级工程师。先后从事CO2 矿化、废水处理、粉煤灰综合利用、NOx 催化还原、WOCs 催化氧化、绿氨合成、CO2 电催化等能源化工与环境领域的研发工作。目前主要研究领域为能源化工与环境催化关键材料的研发及机理研究。ge.li.f@chnenergy.com.cn   
引用本文:    
李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
LI Ge, MA Ziran, LYU Fei, PENG Shengpan, TONG Zhenwei. Advances in the Application of Machine Learning in Electrocatalytic Carbon Dioxide Reduction. Materials Reports, 2025, 39(1): 23110048-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110048  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110048
1 Davis S J, Caldeira K, Matthews H D. Science, 2010, 329(5997), 1330.
2 Evans G W. Annual Review of Psychology, 2019, 70(1), 449.
3 UN Environment Programme. Emissions gap report 2023:broken Record. 2023.
4 Zhao X L, Xiao J Y, Hou J M, et al. Economic and scale prediction of CO2 capture, utilization and storage technologies in China, China's carbon neutrality road, China Electric Power Press, Beijing, 2021, pp.153.
5 Tukendra K, Satya E J. Energy & Fuels, 2023, 37(5), 3570.
6 Michele A, Angela D, Antonella A. Chemical Reviews, 2014, 114(3), 1709.
7 Artz J, Müller T E, Thenert K, et al. Chemical Reviews, 2018, 118(2), 434.
8 Xue Y, Zhou X X, Zhu Y F, et al. Energy & Fuels, 2021, 35(7), 5696.
9 Roy S C, Varghese O K, Paulose M, et al. ACS Nano, 2010, 4(3), 1259.
10 Kaliyaperumal A, Gupta P, Prasad Y S S, et al. ACS Engineering Au, 2023, 3 (6), 403.
11 Choi C H, Chung K, Nguyen T T H, et al. ACS Energy Letters, 2018, 3(6), 1415.
12 Jafarzadeh M, Daasbjerg K. ACS Applied Energy Materials, 2023, 6(13), 6851.
13 Fiedler L, Shah K, Bussmann M, et al. Physical Review Materials, 2022, 6(4), 040301.
14 Zheng R, Xie Z, He M, et al. Joule, 2022, 6, 1148.
15 Chen L, Zhang X, Chen A, et al. Chinese Journal of Catalysis, 2022, 43(1), 11.
16 Mai H X, Le T C, Chen D H, et al. Chemical Reviews, 2022, 122, 13478.
17 Salkind A J, Fennie C, Singh P, et al. Journal of Power Sources, 1999, 80(1-2), 293.
18 Morgan D, Ceder G, Curtarolo S. MRS Proceedings, 2003, 804, 305.
19 Curtarolo S, Morgan D, Persson K, et al. Physical Review Letters, 2003, 91(13), 135503.
20 Morgan D, Ceder G, Curtarolo S. Measurement Science and Technology, 2005, 16(1), 296.
21 Feldman K, Agnew S R. JOM, 2014, 66(3), 336.
22 Widener A. Chemical & Engineering News Archive, 2013, 91(31), 25.
23 Li H, Jiang Y, Li X, et al. Journal of the American Chemical Society, 2023, 145(26), 14335.
24 Yohannes A G, Lee C, Talebi P, et al. ACS Catalysis, 2023, 13(13), 9007.
25 Wei J, Yang Y, Liu J, et al. Journal of CO2Utilization 2022, 64, 102165.
26 Sun Z H, Yin H, Liu K L, et al. Smart Materials 2022, 3(1), 68.
27 Wan X, Zhang Z, Niu H, et al. Journal of Physical Chemistry Letters, 2021, 12(26), 6111.
28 Feng H, Ding H, He P, et al. Journal of Materials Chemistry A, 2022, 10(36), 18803.
29 Timoshenko J, Jeon H S, Sinev I, et al. Chemical Science, 2020. 11(14), 3727.
30 Guo Y, He X R, Su Y M, et al. Journal of the American Chemical Society, 2021, 143, 5755.
31 Song Z, Zhou Q, Lu S, et al. Journal of Physical Chemistry Letters, 2023, 14(14), 3594.
32 Zhong M, Tran K, Min Y, et al. Nature, 2020, 581(7807), 178.
33 Tran K, Ulissi Z W. Nature Catalysis, 2018, 1(9), 696.
34 Roy D, Mandal S C, Pathak B. ACS Applied Material Interfaces, 2021, 13(47), 56151.
35 Pedersen J K, Batchelor T A A, Bagger A, et al. ACS Catalysis, 2020, 10(3), 2169.
36 Ma X, Li Z, Achenie L E K, et al. Journal of Physical Chemistry Letters, 2015, 6, 3528.
[1] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[2] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[3] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[4] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[5] 王博, 盛鹏, 徐丽, 李圣驿, 白会涛, 李慧, 薛晴. 材料基因工程技术在电工材料研发中的应用与展望[J]. 材料导报, 2024, 38(13): 23020098-17.
[6] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[7] 龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
[8] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[9] 王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
[10] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[11] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[12] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[13] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[14] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[15] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed