Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22110224-10    https://doi.org/10.11896/cldb.22110224
  无机非金属及其复合材料 |
机器学习算法用于自密实混凝土性能设计的研究进展
龙武剑1,2, 罗盛禹1,2, 程博远1,2, 冯甘霖1,2, 李利孝1,2,*
1 深圳大学土木与交通工程学院,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
Research Progress of the Use of Machine Learning Algorithm in Performance Design of Self-compacting Concrete
LONG Wujian1,2, LUO Shengyu1,2, CHENG Boyuan1,2, FENG Ganlin1,2, LI Lixiao1,2,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 26033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了厘清自密实混凝土材料各组分与其工作性能、力学性能、耐久性能间的复杂耦合影响机制,近年来,机器学习方法被越来越多地应用于自密实混凝土配合比设计与优化以及性能分析方面的研究。机器学习方法具有在复杂数据集中学习数据间的内在规律或映射关系的能力,在自密实混凝土设计领域被认为是构建混凝土原材料配合比与性能间映射关系模型的一种具有广阔前景的技术手段。然而,机器学习方法由于其依赖的数据集难以满足以及算法架构的可解释性较差等因素限制,使得基于机器学习在自密实混凝土性能设计领域面临着一系列挑战。本文系统总结梳理当前机器学习在自密实混凝土各项性能设计的应用情况,重点分析数据驱动的机器学习算法应用于自密实混凝土设计领域时面临的主要技术难点:高维度与小样本数据的难题、性能多目标优化难题、模型复杂而缺乏可解释性难题;归纳总结机器学习在自密实混凝土材料性能设计领域应用的发展趋势及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
罗盛禹
程博远
冯甘霖
李利孝
关键词:  机器学习  自密实混凝土  配合比设计  性能预测    
Abstract: In order to clarify the complex coupling mechanisms between the components of self-compacting concrete materials and working, mechanical and durability performances, machine learning methods have been increasingly applied to the design and optimization of self-compacting concrete mixes and performance analysis in recent years. Machine learning methods have the ability to learn intrinsic patterns or mapping relationships between data in complex data sets, and are considered a promising technical tool in the field of self-compacting concrete design for mode-ling mapping relationships between concrete raw material mixes and performances. However, machine learning methods face a number of challenges in the field of self-compacting concrete performance design based on machine learning due to the limitations of its reliance on unsatisfiable data sets and poor interpretability of algorithm architectures. This paper systematically summarizes and compares the current applications of machine learning in the design of self-compacting concrete performances, focusing on the main technical difficulties faced by data-driven machine learning algorithms when applied to the field of self-compacting concrete design:the challenges of high dimensionality and small sample data, the challenges of multi-objective optimization of performances, and the challenges of complex and uninterpretable models. The paper also summarizes the development trends and future directions of machine learning applications in the field of self-compacting concrete material performances design.
Key words:  machine learning    self-compacting concrete    mixing ratio design    performance prediction
发布日期:  2024-06-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金-山东联合基金(U2006223);深圳市科技计划项目(JCYJ20190808151011502);广东省重点领域研发计划项目(2019B111107003)
通讯作者:  *李利孝,深圳大学特聘研究员、博士、博士后、留学博士生导师、新锐研究生导师。2002~2013年在哈尔滨工业大学土木工程学院攻读工学学士、硕士与博士学位;2013~2016年在哈尔滨工业大学动力工程及工程热物理博士后流动站从事博士后研究工作。目前致力于结构风工程、海上风电结构、输电塔线结构、结构健康监测与智能诊断、超构材料开发与混凝土结构耐久性等方面的研究工作。发表论文60余篇,包括SCI检索期刊论文27篇,其中通信作者论文19篇,中国科学院一区论文6篇,二区论文6篇,TOP期刊论文10篇。lilixiao@szu.edu.cn   
作者简介:  龙武剑,深圳大学教授、博士研究生导师。1997—2002年于法国国立图卢兹第三大学攻读学士学位,2002—2004年于法国高等师范大学攻读硕士学位,2004—2008年于加拿大色布鲁克大学攻读博士学位。目前主要研究领域包括混凝土结构耐久性、超高性能绿色水泥基复合材料及结构、固废资源化综合利用等。发表论文120余篇,其中在Carbon、Green Chem、 Cement Concrete Comp、ACI Mater J、 Compos Part B-Eng、 Automat Constr、 Compos Struct等国际知名期刊以第一或通信作者发表学术论文80余篇,中国科学院1区Top期刊论文35篇。
引用本文:    
龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
LONG Wujian, LUO Shengyu, CHENG Boyuan, FENG Ganlin, LI Lixiao. Research Progress of the Use of Machine Learning Algorithm in Performance Design of Self-compacting Concrete. Materials Reports, 2024, 38(11): 22110224-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110224  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22110224
1 Lyu X J, Ding Y B, Cao M L. Concrete, 2013, 286(8), 105(in Chinese).
吕兴军, 丁言兵, 曹明莉. 混凝土, 2013, 286(8), 105.
2 Li S Y. Research on the performance of fiber-reinforced self-compacting lightweight concrete and analysis of its application. Master's Thesis, Henan University, China, 2022(in Chinese).
李衫元, 纤维增强自密实轻质混凝土性能研究及应用分析. 硕士学位论文, 河南大学, 2022.
3 Liu Y J. Research on the workability testing and mix design method of fresh concrete and its application in the design of self-compacting concrete. Master's Thesis, China Building Materials Academy, China, 2000(in Chinese).
刘艳军, 新拌混凝土工作性测试和配合比设计方法的研究及其在自密实混凝土设计中的应用. 硕士学位论文, 中国建筑材料科学研究院, 2000.
4 Nie D. Research on the design method of self-compacting concrete ratio based on net paste rheology. Ph. D. Thesis, Tsinghua University, China, 2013(in Chinese).
聂鼎, 基于净浆流变理论的自密实混凝土配合比优化方法研究. 博士学位论文, 清华大学, 2013.
5 Wu X. Mechanical properties of self-compacting light-aggregate concrete. Ph. D. Thesis, Dalian University of Technology, China, 2014(in Chinese).
吴熙. 自密实轻骨料混凝土的力学性能研究. 博士学位论文, 大连理工大学, 2014.
6 Hong J. Study on the long-term performance of high-strength self-compacting concrete with mechanism sand, Master's Thesis, Guizhou University, China, 2021(in Chinese).
洪靖. 机制砂高强自密实混凝土长期性能研究. 硕士学位论文, 贵州大学, 2021.
7 Tao H L. Study on physical and mechanical properties of steel fiber high strength self-compacting concrete. Master's Thesis, Zhongyuan University of Technology, China, 2022(in Chinese).
陶宏利, 钢纤维高强自密实混凝土物理力学性能研究. 硕士学位论文, 中原工学院, 2022.
8 Liu S G, Zhu D H, Wan Y N. China Harbour Engineering, 2011, 177(6), 82(in Chinese).
刘思国, 朱德华, 万一宁. 中国港湾建设, 2011, 177(6), 82.
9 Lyu M. Study on the test method for optimizing the workability of self-compacting concrete. Master's Thesis, North China University of Technology, China, 2019(in Chinese).
吕淼, 自密实混凝土工作性能优化测试方法研究. 硕士学位论文, 北方工业大学, 2019.
10 Khaleel O R, Razak H A. Materials and Design, 2014, 53, 691.
11 Dinakar P, Sethy K P, Sahoo U C. Materials and Design, 2013, 43, 161.
12 Kanadasan J, Razak H A. Materials & Design, 2014, 56, 9.
13 Bouziani T. Construction and Building Materials, 2013, 49, 308.
14 Ferrara L, Park Y D, Shah S P. Cement and Concrete Research, 2007, 37, 957.
15 Sun Z J. Concrete, 2011, 262(8), 30(in Chinese).
孙仲健. 混凝土, 2011, 262(8), 30.
16 Shang L. Research on the design of self-compacting concrete ratio of mechanism sand based on artificial neural network technology. Master's Thesis, Shenzhen University, China, 2020(in Chinese).
尚莉. 基于人工神经网络技术的机制砂自密实混凝土配合比设计研究. 硕士学位论文, 深圳大学, 2020.
17 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101, 741.
18 Huang Y M, Zhang J F, Ann F T, et al. Construction and Building Materials, 2020, 260, 120457.
19 Fan D Q, Yu R, Fu S Y, et al. Cement & Concrete Composites, 2021, 122, 104171.
20 Purnell P, Black L. Cement and Concrete Research, 2012, 42, 874.
21 Zhou J K. Public Communication of Science & Technology, 2019, 11(6), 153(in Chinese).
周昀锴. 科技传播, 2019, 11(6), 153.
22 Liu Y, Zhou X X, Yang Z W, et al. Journal of the Chinese Ceramic So-ciety, 2022, 50(3), 863(in Chinese).
刘悦, 邹欣欣, 杨正伟, 等. 硅酸盐学报, 2022, 50(3), 863.
23 Nehdi M, El Chabib H, El Naggar M. Aci Materials Journal, 2001, 98, 394.
24 Zhou S Q, Shi J J, Yang X F, et al. Journal of Water Resources and Architectural Engineering, 2005(4), 44(in Chinese).
周绍青, 石建军, 杨晓锋, 等. 水利与建筑工程学报, 2005(4), 44.
25 Ben Aicha, Al Asri, Zaher, et al. Powder Technology, 2022, 401, 117345.
26 Siddique R. Computers and Concrete, 2008, 5, 461.
27 Sonebi M, Cevik A, Grunewald S, et al. Construction and Building Materials, 2016, 106, 55.
28 Azimi-Pour M, Eskandari-Naddaf H, Pakzad A. Construction and Buil-ding Materials, 2020, 230, 117021.
29 Zhang J F, Ma G W, Huang Y M, et al. Construction and Building Materials, 2019, 210, 713.
30 Liu H B, Zhang F, Chen Z H, et al. Journal of Civil and Environmental Engineering, 2022(1), 14(in Chinese).
刘红波, 张帆, 陈志华, 等. 土木与环境工程学报, 2022(1), 14.
31 Xiao Q N. Multi-objective optimization of concrete mix ratio based on artificial intelligence. Master's Thesis, Guangzhou University, China, 2022(in Chinese).
肖祁南. 基于人工智能的混凝土配合比多目标优化研究. 硕士学位论文, 广州大学, 2022.
32 Black J E, Kueper J K, Williamson T S. ,Family Practice, 2022, 40(1), 200.
33 Sun D G. Information Technology and Informatization, 2022, 266(5), 190(in Chinese).
孙德刚. 信息技术与信息化, 2022, 266(5), 190.
34 Zhao C W. Shanxi Electronic Technology, 2020, 210(3), 94(in Chinese).
赵崇文. 山西电子技术, 2020, 210(3), 94.
35 Cortes C, Vapnik V. Machine Learning, 1995, 20, 273.
36 Ying H H. Support vector machine based concrete performance study. Master's Thesis, Hunan University, China, 2012(in Chinese).
殷宏辉. 基于支持向量机的混凝土性能研究. 硕士学位论文, 湖南大学, 2012.
37 Leo B. Machine Learning, 2001, 45, 5.
38 Wang X S, Huang M. Water Conservancy Science and Technology and Economy, 2020, 26(5), 17(in Chinese).
王香帅, 黄铭. 水利科技与经济, 2020, 26(5), 17.
39 Xu Z Y. Research on bridge data monitoring based on machine learning and deep learning. Master's Thesis, Guizhou University, China, 2022(in Chinese).
徐峥匀. 基于机器学习与深度学习的桥梁数据监测研究. 硕士学位论文, 贵州大学, 2022.
40 Lyu X L, Song J. Big data mining and statistical machine learning, China Renmin University Press, 2016, pp.239 (in Chinese).
吕晓玲, 宋捷. 大数据挖掘与统计机器学习, 中国人民大学出版社, 2016, pp.239.
41 Khayat K H, Ghezal A. Materials and Structures/Materiaux et Constructions, 1999, 32, 679.
42 Su N, Hsu K C, Chai H W. Cement and Concrete Research, 2001, 31, 1799.
43 Bui V K, Akkaya Y, Shah S P. ACI Materials Journal, 2002, 99, 549.
44 Li T, Wang H. Journal of ASTM International, 2006, 3,30.
45 Ozbay E, Oztas A, Baykasoglu A, et al. Construction and Building Materials, 2009, 23, 694.
46 Kheder G F, Al-Jadiri R S. ACI Materials Journal, 2010, 107, 490.
47 Abo Dhaheer M S, Al-Rubaye M M, Alyhya W S, et al. Journal of Sustainable Cement-Based Materials, 2016, 5, 199.
48 Huang Y J, Li Y, Yi J, et al. Construction Quality, 2014, 32(8), 67(in Chinese).
黄亚均, 李珏, 易继刚, 等. 工程质量, 2014, 32(8), 67.
49 Zhao Q X, Sun W, Jiang G Q, et al. Industrial Construction, 2006(S1), 850(in Chinese).
赵庆新, 孙伟, 姜国庆, 等. 工业建筑, 2006(S1), 850.
50 Abu Yaman M, Abd Elaty M, Taman M. Alexandria Engineering Journal, 2017, 56, 523.
51 Prashant B, Ankur B. Materials Today:Proceedings, 2022, 65, 603.
52 Annlin J, Ramesh K. Lecture Notes in Civil Engineering, 2022, 194, 461.
53 Yu F, Wang J X. Building Structure, 2021, 51(S1), 1316(in Chinese).
于方, 王嘉雄. 建筑结构, 2021, 51(S1), 1316.
54 Liu H L, Gu Y S, Shi J J, et al. Concrete, 2010, 247(5), 10(in Chinese).
刘华良, 顾杨圣, 石建军, 等. 混凝土, 2010, 247(5), 10.
55 Xiong E. Testing and numerical analysis of rheological properties of fresh self-compacting concrete with different aggregates. Master's Thesis,University of South China, China, 2011(in Chinese).
熊恩. 不同骨料新拌自密实混凝土流变性能测试和数值分析. 硕士学位论文, 南华大学, 2011.
56 Ben Aicha M, Al Asri Y, Zaher M, et al. Powder Technology, 2022, 401, 117345.
57 El Asri Y, Ben Aicha M, Zaher M, et al. Materials Today:Procee-dings, 2022, 58, 1114(in Chinese).
58 Zuo W Q. Study on robustness and shrinkage properties of self-compacting concrete. Ph. D. Thesis, Southeast University, China, 2018(in Chinese).
左文强. 自密实混凝土鲁棒性与收缩性能研究. 博士学位论文, 东南大学, 2018.
59 Ding Z C. Research on real-time adjustment method of self-compacting concrete working performance based on deep learning. Ph. D. Thesis, Tsinghua University, China, 2018(in Chinese).
丁仲聪. 基于深度学习的自密实混凝土工作性能实时调整方法研究. 博士学位论文, 清华大学, 2018.
60 Prasad B K R, Eskandari H, Reddy B V V. Construction and Building Materials, 2009, 23, 117.
61 Uysal M, Tanyildizi H. Construction and Building Materials, 2012, 27, 404.
62 Asteris P G, Kolovos K G, Douvika M G, et al. European Journal of Environmental and Civil Engineering, 2016, 20, 102.
63 Serraye, Kenai, Boukhatem. Civil Engineering Journal (Iran), 2021, 7, 118.
64 Farooq F, Czarnecki S, Niewiadomski P, et al. Materials, 2021, 14, 27.
65 Yousef El A, Mouhcine B A, Mounir Z, et al. Materials Today:Procee-dings, 2022. 57, 859.
66 Aiyer B G, Kim D, Karingattikkal N, et al. KSCE Journal of Civil Engineering, 2014, 18, 1753.
67 Kutanaei S S, Choobbasti A J. Journal of Adhesion Science and Technology, 2015, 29, 487.
68 Mashhadban H, Kutanaei S S, Sayarinejad M A. Construction and Buil-ding Materials, 2016, 119, 277.
69 Xiao Q H, Li C M, Lei S X, et al. Advances in Civil Engineering, 2021, 2021, 6663767.
70 de-Prado-Gil J, Palencia C, Silva-Monteiro N, et al. Case Studies in Construction Materials, 2022, 16, e01046.
71 Jiang H D, Liu G L, Alyami H, et al. Journal of Cleaner Production, 2022, 340, 130580.
72 MashhadbanH, Kutanaei S S, Sayarinejad M A. Construction and Building Materials, 2016, 119, 277.
73 Pazouki G, Pourghorban A. European Journal of Environmental and Civil Engineering, 2022, 26, 5569.
74 Xu W S, Wu X G, Feng Z B, et al. Modern Tunnelling Technology, 2022, 59(6), 1(in Chinese).
徐文胜, 吴贤国, 冯宗宝, 等. 现代隧道技术, 2022, 59(6), 1.
75 Zhang J F, Huang Y M, Wang Y H, et al. Construction and Building Materials, 2020, 253, 713.
76 Prasad B K R, Eskandari H, Reddy B V. Construction and Building Materials, 2009, 23, 117.
77 Uysal M, Tanyildizi H. Construction and Building Materials, 2011, 25, 4105.
78 Uysal M, Tanyildizi H. Construction and Building Materials, 2012, 27, 404.
79 Mazloom M, Yoosefi M. Computers and Concrete, 2013, 12, 285.
80 Aiyer B G, Kim D, Karingattikkal N, et al. Ksce Journal of Civil Engineering, 2014, 18, 1753.
81 Tavakoli H R, Omran O L, Shiade M F, et al. Latin American Journal of Solids and Structures, 2014, 11, 1906.
82 Asteris P G, Kolovos K G, Douvika M G, et al. European Journal of Environmental and Civil Engineering, 2016, 20, s102.
83 Douma O B, Boukhatem B, Ghrici M, et al. Neural Computing & Applications, 2017, 28, S707.
84 Jayaprakash G, Muthuraj M P. Cmc-Computers Materials & Continua, 2018, 54, 83.
85 Asteris P G, Kolovos K G. Neural Computing & Applications, 2019, 31, 409.
86 Zhang J F, Ma G W, Huang Y M, et al. Construction and Buil-ding Materials, 2019, 210, 713.
87 Al-Mughanam T, Aldhyani T H, Alsubari B, et al. Sustainability, 2020, 12, 13.
88 Kaloop M R, Samui P, Shafeek M, et al. Applied Sciences-Basel, 2020, 10, 17.
89 Boudali S, Abdulsalam B, Rafiean A H, et al Sustainability, 2021, 13, 28.
90 Farooq F, Czarnecki S, Niewiadomski P, et al. Materials, 2021, 14, 27.
91 de-Prado-Gil J, Palencia C, Jagadesh P, et al Materials, 2022, 15, 20.
92 de-Prado-Gil J, Palencia C, Silva-Monteiro N, et al. Case Studies in Construction Materials, 2023, 16, 17.
93 Faraj R H, Mohammed A A, Mohammed A, et al. Engineering with Computers, 2022, 38, 2365.
94 Pazouki G, Golafshani E M, Behnood A. Structural Concrete, 2022, 23, 1191.
95 Yuan J, Zhao M, Esmaeili-Falak M. Structural Concrete, 2022, 23, 753.
96 Nasr D, Behforouz B, Borujeni P R, et al. Construction and Building Materials, 2019, 229, 116888.
97 Salami B A, Rahman S M, Oyehan T A, et al. Measurement, 2020, 165, 108141.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[3] 王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
[4] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[5] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[6] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[7] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[8] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[9] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[10] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[11] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[12] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[13] 宋庆功, 常斌斌, 董珊珊, 顾威风, 康建海, 王明超, 刘志锋. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36(1): 20080139-7.
[14] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[15] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed