Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 23070257-7    https://doi.org/10.11896/cldb.23070257
  无机非金属及其复合材料 |
高强抗冻透水混凝土的配合比设计与性能评估
何松松, 焦楚杰*, 欧旭
广州大学土木工程学院,广州 510006
Mix Design and Performance Evaluation of High Strength Freeze-resistant Pervious Concrete
HE Songsong, JIAO Chujie*, OU Xu
School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 21653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透水混凝土是建设海绵城市的关键材料。目前普通透水混凝土强度低,抗冻性能差,使其难以在机动车道和有抗冻需求的道路工程中应用。本工作基于颗粒堆积模型研制了抗压强度超过160 MPa的超高强胶凝基质,其具有较强的成膜能力,且稳定膜厚度(SPFT)随流动度的减小和骨料粒径的增大而增加。本工作还建立了SPFT与流动度的关系,进而提出了高强抗冻透水混凝土(HSFRPC)配合比设计方法。利用该方法设计并制备出抗压强度大于50 MPa、弯曲强度大于7.5 MPa、透水系数大于4 mm/s、抗冻等级达F300的HSFRPC。本试验分析了骨料粒径和孔隙率对HSFRPC工程性能(力学性能、透水性能和抗冻性能)的影响规律。基于雷达图的性能评估结果表明:骨料粒径为2.36~4.75 mm、设计孔隙率为20%的HSFRPC工程性能优越且各项性能均衡,可供寒区道路工程参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何松松
焦楚杰
欧旭
关键词:  透水混凝土  高强  抗冻性能  配合比设计  弯曲强度    
Abstract: Pervious concreteis a key material for the construction of sponge city. At present, the low strength and poor frost resistance of ordinary per-vious concrete are considered to limit its application in high-grade roads. In this work, an ultra-high strength cementitious matrix with a compressive strength of over 160 MPa was developed based on a particle packing model, which has strong film-forming ability. Its stable paste film thickness (SPFT) increases with decreasing fluidity and increasing aggregate particle size, and the relationship between SPFT and fluidity was established. Furthermore, the mix design method of high strength frost resistant pervious concrete (HSFRPC) was proposed. HSFRPC with compressive strength over 50 MPa, flexural strength over 7.5 MPa, water permeability coefficient over 4 mm/s, and frost resistance grade up to F300 was designed and produced by this method. The effects of aggregate particle size and porosity on the mechanical properties, water per-meability, and frost resistance of HSFRPC were analyzed. The properties evaluation results based on radar map show that HSFRPC with an aggregate particle size of 2.36—4.75 mm and a design porosity of 20% has excellent and balanced engineering performance, and can be referred to for road engineering in cold regions.
Key words:  pervious concrete    high strength    freeze-thaw resistance    mix design    flexural strength
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378226;52078148);广东省普通高校重点领域专项(2021ZDZX4009);广东省自然科学基金(2022A1515010038);广州市基础研究计划市校(院)联合资助项目(SL2023A03J00880);广州市教育局高校科研项目(202235263);珠海市社会发展领域科技计划项目(ZH22036201210032PWC);广州大学校内科研项目(RC2023035)
通讯作者:  *焦楚杰,广州大学教授、博士研究生导师。2004年于东南大学获得博士学位。主持国家自然科学基金项目6项、省部和市厅级科研项目37项,获省部级科技进步奖3项,发表论文172篇,获中国和日本专利30项。目前主要从事高性能透水混凝土和植生混凝土方面的研究工作。515509767@qq.com   
作者简介:  何松松,广州大学讲师、博士研究生。2015年于东北林业大学获得硕士学位。主持和参与国家、省部和市厅级科研项目12项,获省部级科技进步奖三项。目前主要研究领域为高性能透水混凝土。
引用本文:    
何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
HE Songsong, JIAO Chujie, OU Xu. Mix Design and Performance Evaluation of High Strength Freeze-resistant Pervious Concrete. Materials Reports, 2023, 37(21): 23070257-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070257  或          http://www.mater-rep.com/CN/Y2023/V37/I21/23070257
1 Xie X, Zhang T, Yang Y, et al. Construction and Building Materials, 2018, 168, 732.
2 Fang M, Wang X, Liu J, et al. Construction and Building Materials, 2022, 360, 129558.
3 He S, Jiao C, Li S. Construction and Building Materials, 2023, 363, 129508.
4 AlShareedah O, Nassiri S. Journal of Cleaner Production, 2021, 288, 125095.
5 Tan Y, Zhou C, Zhong C, et al. International Journal of Pavement Engineering, 2021, 6, 1.
6 Dai Z, Li H, Zhao W, et al. Construction and Building Materials, 2020, 233, 117178.
7 Debnath B, Sarkar P. Construction and Building Materials, 2021, 294, 123594.
8 Zhong R, Wille K. Construction and Building Materials, 2016, 109, 177.
9 Xie X G, Zhang T S, Lin Z Y, et al. Cement and Concrete Composites, 2020, 113, 103693.
10 Saboo N, Shivhare S, Kori K K, et al. Construction and Building Materials, 2019, 223, 322.
11 Adil G, Kevern J T, Mann D. Construction and Building Materials, 2020, 247, 118453.
12 Zhang C, Ren P P, Deng P, et al. Journal of Hunan University(Natural Sciences), 2023, 50(3), 185 (in Chinese).
张超, 任鹏鹏, 邓鹏, 等. 湖南大学学报(自然科学版), 2023, 50(3), 185.
13 Li A Y, Qiao H, Li Q, et al. Construction and Building Materials, 2021, 300, 123997.
14 Qin Y, Pang X, Tan K, et al. Cement and Concrete Composites, 2021, 119, 104022.
15 Li D, Toghroli A, Shariati M, et al. Smart Structures and Systems, 2019, 23(2), 207.
16 Yang X, Liu J, Li H, et al. Construction and Building Materials, 2020, 235, 117532.
17 Yang J, Guo Y, Tam V W Y, et al. Construction and Building Materials, 2022, 361, 129747.
18 Liu T, Wang Z, Zou D, et al. Cement and Concrete Research, 2019, 122, 72.
19 Rodin III H, Rangelov M, Nassiri S, et al. Journal of Materials in Civil Engineering, 2018, 30(3), 04018012.
20 Akand L, Yang M, Wang X. Construction and Building Materials, 2018, 163, 32.
21 Bright S S, Madasamy M. Road Materials and Pavement Design, 2022, 23(6), 1305.
22 Zhao J F, Yang X J, Li H X, et al. Journal of Building Materials, 2019, 22(2), 266 (in Chinese).
赵剑锋, 杨晓杰, 李好新, 等. 建筑材料学报, 2019, 22(2), 266.
23 Huang W, Wang H. Composites Part B: Engineering, 2022, 242, 110035.
24 Zeng L, He M, Zhang M H, et al. Materials Reports, 2019, 33(24), 4086 (in Chinese).
曾路, 何牟, 张明华, 等. 材料导报, 2019, 33(24), 4086.
25 CJJ 37-2012, Code for design of urban road engineering, Ministry of Housing and Urban-Rural Development of the People's Republic of China, China (in Chinese).
CJJ 37-2012, 城市道路工程设计规范, 中华人民共和国住房和城乡建设部.
26 JTG D40-2011, Specifications for design of highway cement concrete pavement, Ministry of Transport of the People's Republic of China, China (in Chinese).
JTG D40-2011, 公路水泥混凝土路面设计规范, 中华人民共和国交通运输部.
27 Li K, Yang C, Zeng L, et al. Journal of Building Engineering, 2023, 68, 106052.
28 Yu R, Spiesz P, Brouwers H. Cement and Concrete Research, 2014, 56, 29.
29 Xu X B, Jin Z Q, Yu Y, et al. Materials Reports, 2022, 36(S2), 186 (in Chinese).
徐翔波, 金祖权, 于泳, 等. 材料导报, 2022, 36(S2), 186.
[1] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[4] 王艳林, 张灵通, 张博炜, 綦才, 陈晓华, 王自东. 高强韧弹簧钢中Ti-V-B-N-C系微量元素耦合热力学分析及其对第二相析出行为的影响[J]. 材料导报, 2023, 37(20): 22030303-7.
[5] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[6] 聂光临, 刘一军, 汪庆刚, 程科木, 吴洋, 黄玲艳, 潘利敏, 包亦望, 饶平根. 片状Al2O3增强建筑陶瓷板材的制备与性能研究[J]. 材料导报, 2023, 37(16): 22020046-7.
[7] 陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
[8] 吴启静, 马洁茹, 刘硕, 王露臻, 周彤, 李大纲, 陈楚楚. 全生物质α-甲壳素纳米纤维柔性透明膜的制备及性能研究[J]. 材料导报, 2023, 37(14): 22010094-6.
[9] 杨明, 陈晓华, 王自东, 王艳林, 左玲立. 合金元素Ni/Al对45Si2MnCr2Mo超高强韧钢冲击磨料磨损行为的影响[J]. 材料导报, 2023, 37(13): 22030042-8.
[10] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[11] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[12] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[13] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[14] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[15] 李辉, 杨洁, 付凯敏, 张毅, 张犁, 朱耀庭, 俞博. 基于胶浆特性的透水混凝土强度及抗冻性研究[J]. 材料导报, 2022, 36(16): 21110275-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed