Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21110275-8    https://doi.org/10.11896/cldb.21110275
  低碳生态路面材料 |
基于胶浆特性的透水混凝土强度及抗冻性研究
李辉1,*, 杨洁1, 付凯敏2, 张毅1, 张犁1, 朱耀庭3, 俞博4
1 同济大学道路与交通工程教育部重点实验室,上海 201804
2 江西赣粤高速公路股份有限责任公司科创发展中心,南昌 330000
3 江西赣江新区开发投资集团有限责任公司,南昌 330000
4 江西省长大桥隧研究设计院有限公司,南昌 330000
Investigation on the Strength and Freeze-Thaw Resistance of Pervious Concrete Based on the Properties of Cement Paste
LI Hui1,*, YANG Jie1, FU Kaimin2, ZHANG Yi1, ZHANG Li1, ZHU Yaoting3, YU Bo4
1 The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
2 Center for Technology Innovation and Development, Jiangxi Ganyue Expressway Co., Ltd., Nanchang 330000, China
3 Jiangxi Ganjiang New Area Development Investment Group Co., Ltd., Nanchang 330000, China
4 Jiangxi Long Span Bridge & Tunnel Research and Design Institute Co., Ltd., Nanchang 330000, China
下载:  全 文 ( PDF ) ( 34302KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透水混凝土的强度和抗冻性是影响其在重荷载交通道路和寒冷地区推广应用的关键性能。本工作研究了胶浆工作性能、强度、界面粘结性能及透水混凝土强度、抗冻性,并揭示了影响透水混凝土性能的主要因素。结果表明,通过最大浆集比可以评价胶浆和透水混凝土的工作性能,且当最大浆集比与设计浆集比接近时,透水混凝土的工作性能最佳。未改性胶浆界面冻融前后均发生粘结破坏。而改性胶浆未冻融时界面拉拔强度提升67%~156%,发生内聚破坏;冻融后界面拉拔强度显著降低,发生内聚、粘结混合破坏。工作性能良好的透水混凝土抗压强度为38.2~40.3 MPa,抗折强度为3.8~4.3 MPa,透水系数为2.85~2.92 mm/s。主成分分析结果表明,各因素对透水混凝土性能影响的占比依次为:界面性能、胶浆配合比、空隙特征共占44.8%,胶浆裹覆性能占27.5%,胶浆强度占20.0%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
杨洁
付凯敏
张毅
张犁
朱耀庭
俞博
关键词:  透水混凝土  强度  抗冻性  胶浆  界面粘结    
Abstract: The strength and the freeze-thaw resistance of pervious concrete are key properties for its application in heavy-load traffic roads and cold regions. The workability, the strength and the interfacial adhesion of cement paste as well as the strength and the freeze-thaw resistance of pervious concrete were investigated, and the main factors affecting the performance of pervious concrete were revealed. The results show that the wor-kability of paste and pervious concrete can be evaluated by the maximum paste-aggregate ratio, and good workability of pervious concrete can be obtained when the maximum paste-aggregate ratio is close to the designed paste-aggregate ratio. The adhesive damage occurs whether freeze-thaw tests are performed on the unmodified paste or not. On the contrary, the pull-off strength of the modified paste is 67% to 156% higher than that of the unmodified paste without freeze-thaw tests, with cohesive damage occurring, while it is significantly reduced after freeze-thaw tests,with both cohesive damage and adhesive damage appearing. The compressive strength of the pervious concrete with good workability is 38.2—40.3 MPa, the flexural strength is 3.8—4.3 MPa, and the permeability coefficient is 2.85—2.92 mm/s. The results of the principal component analysis show that the principal factors on the performance of pervious concrete are in order as follows: 44.8% for interfacial properties, mix design of paste and void characteristics, 27.5% for coating properties of paste, and 20.0% for the strength of paste.
Key words:  pervious concrete    strength    freeze-thaw resistance    cement paste    interfacial adhesion
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 中央高校基本业务经费(22120210027)
通讯作者:  *hli@tongji.edu.cn   
作者简介:  李辉,同济大学交通运输工程学院教授、博士研究生导师。2005年、2008年分别于东南大学土木工程专业本科、道路与铁道工程专业硕士毕业,2011年、2012年分别于美国加州大学戴维斯校区环境与资源经济学专业硕士、土木与环境工程专业博士毕业,2015年于美国加州大学戴维斯校区研究科学家工作结束后到同济大学工作至今。目前主要从事交通基础设施及城市环境的可持续性及弹韧性等方面的研究工作。发表论文100余篇,包括Journal of Cleaner ProductionJournal of Environmental ManagementConstruction and Building MaterialsTransportation Research Part D: Transport and Environment等;出版英文专著1部、中文专著2部;授权发明专利6项。
引用本文:    
李辉, 杨洁, 付凯敏, 张毅, 张犁, 朱耀庭, 俞博. 基于胶浆特性的透水混凝土强度及抗冻性研究[J]. 材料导报, 2022, 36(16): 21110275-8.
LI Hui, YANG Jie, FU Kaimin, ZHANG Yi, ZHANG Li, ZHU Yaoting, YU Bo. Investigation on the Strength and Freeze-Thaw Resistance of Pervious Concrete Based on the Properties of Cement Paste. Materials Reports, 2022, 36(16): 21110275-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110275  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21110275
1 Offenberg M A, Wade D J, Weiss C A, et al. Report on pervious concrete (reapproved 2011), American Concrete Institute, United States, 2010.
2 Xie N, Akin M, Shi X M. Journal of Cleaner Production, 2019, 210, 1605.
3 Singh A, Sampath P V, Biligiri K P. Construction and Building Mate-rials, 2020, 261, 120491.
4 Kevern J T, Wang K, Schaefer V R. Journal of Materials in Civil Engineering, 2010, 22(5), 469.
5 Yu F, Sun D Q, Wang J, et al. Construction and Building Materials, 2019, 209, 463.
6 Jiang K, Qi C Z, Cui Y J, et al. Materials Reports, 2020, 34(Z1), 189(in Chinese).
姜宽, 戚承志, 崔英洁, 等. 材料导报, 2020, 34(Z1), 189.
7 Yang X J, Liu J S, Li H X, et al. Construction and Building Materials, 2020, 235, 117532.
8 Zhong R, Wille K. Construction and Building Materials, 2015, 98, 51.
9 Liu R Y, Chi Y, Chen S Y, et al. International Journal of Concrete Structures and Materials, 2020, 14(1), 29.
10 Yu F. Research on performance enhancement technology of pervious concrete. Ph.D. Thesis, Tongji University, China, 2020(in Chinese).
余帆. 透水混凝土路面材料性能增强技术研究. 博士学位论文, 同济大学, 2020.
11 Deo O, Neithalath N. Construction and Building Materials, 2011, 25(11), 4181.
12 Deo O, Neithalath N. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2010, 528(1), 402.
13 Rehder B, Banh K, Neithalath N. Engineering Fracture Mechanics, 2014, 118, 1.
14 Taheri B M, Ramezanianpour A M, Sabokpa S, et al. Journal of Buil-ding Engineering, 2021, 33, 101617.
15 Zhong R, Wille K. Cement & Concrete Composites, 2016, 70, 130.
16 Zhong R, Wille K. Construction and Building Materials,2018,162,132.
17 Chen T F, Gao X J. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3872.
18 Vancura M, Macdonald K, Khazanovich L. Cement & Concrete Compo-sites, 2011, 33(10), 1080.
19 Jiang Z W, Sun Z P, Wang P M. Journal of Building Materials, 2005(5), 513(in Chinese).
蒋正武, 孙振平, 王培铭. 建筑材料学报, 2005(5), 513.
20 Zhang Y, Li H, Abdelhady A, et al. Construction and Building Mate-rials, 2020, 263, 120614.
21 Li J Y, Cao J G, Xu W Y, et al. Journal of Hydraulic Engineering,1999(1),42(in Chinese).
李金玉, 曹建国, 徐文雨, 等. 水利学报, 1999(1), 42.
22 Wang H L, Li Q B. Engineering Mechanics,2006(10),141(in Chinese).
王海龙, 李庆斌. 工程力学, 2006(10), 141.
23 Zhang S P, Deng M, Tang M S. Journal of Materials Science & Enginee-ring, 2008, 26(6), 990(in Chinese).
张士萍, 邓敏, 唐明述. 材料科学与工程学报, 2008, 26(6), 990.
[1] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[2] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[3] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[4] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[5] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[6] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[7] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[8] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[9] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[10] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[11] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[12] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[13] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[14] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[15] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed