Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21120237-8    https://doi.org/10.11896/cldb.21120237
  金属与金属基复合材料 |
脉冲磁体用高强高导Cu-Nb复合线材的研究进展
王鹏飞*, 梁明, 贾佳林, 马小波, 徐晓燕
西北有色金属研究院, 西安 710016
Advances in Research of High-strength and High-conductivity Cu-Nb Composite Wires Used for Pulsed Magnets
WANG Pengfei*, LIANG Ming, JIA Jialin, MA Xiaobo, XU Xiaoyan
Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 10493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强高导铜合金材料是集优良物理性能和力学性能于一体的有色金属材料,能够同时具备高强度、高电导率以及高热导率等性能。近年来,铜合金材料备受关注,在脉冲强磁场、转换开关、电接触器、引线框架及电车和电力火车导线等诸多领域展现出广阔的应用前景。Cu-Nb复合线材作为一种典型的高强度、高电导、高导热铜基复合材料,是制备超高场脉冲磁体的首选导体材料。本文系统总结了脉冲强磁场发展史,脉冲磁体导体材料用Cu-Nb复合线材的主要制备技术,芯丝结构演变特征,材料的热稳定性、强化机理及导电机理等方面的研究进展,最后指出了目前我国脉冲强磁场突破110 T所需Cu-Nb复合线材存在的问题及面临的挑战,并提出了关于未来研究重点的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏飞
梁明
贾佳林
马小波
徐晓燕
关键词:  脉冲磁体  高强高导Cu-Nb复合线材  结构演变  强化机理  导电机理    
Abstract: High-strength and high-conductivity copper alloys are typical non-ferrous metallic materials with excellent physical and mechanical properties. Featuring characteristics of ultra-high strength and high electrical & thermal conductivity, those alloys have been attracting a lot of attention lately, and have shown potential in a wide range of applications, such as ultra-high field pulsed magnets, transfer switches, electrical contractors, lead frames, and wires for trams and electric trains. Copper-niobium microcomposites, a new class of high-strength high-conductivity materials with attractive properties, are regarded as promising candidate conductor material for high-field pulsed magnets. The present review entails a retrospect of the development of pulsed magnetic field, and a summary of the research progress of highly conductive Cu-Nb composite wires from several aspects, including the preparation technology of the material, the evolutionary characteristics of the filaments structure, and thermal stability and strengthening and conducting mechanisms of the material. The paper ends with a prospective discussion about the challenging issues related to Cu-Nb composite wires aiming at achieving 110 T-and-higher pulsed magnetic field, and some suggestions for the future research.
Key words:  pulsed magnet    high-strength and high-conductivity Cu-Nb composite wire    structural evolution    strengthening mechanism    conducting mechanism
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG135+.1  
基金资助: 国家自然科学基金(52073233);陕西省重点研发项目(2022GY-376)
通讯作者:  *王鹏飞,西北有色金属研究院副研究员,2009年6月获得陕西师范大学凝聚态物理硕士学位,2021年3月获得西北工业大学材料学博士学位。目前主要从事高性能铜合金材料关键制备技术及相关机理研究,发表论文11篇,授权中国发明专利8项。主持和参与了国家重点研发计划子课题、国家青年基金、国家面上基金、陕西省重点研发计划及国家脉冲磁场中心横向项目等。wpf_chenxi@163.com   
引用本文:    
王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
WANG Pengfei, LIANG Ming, JIA Jialin, MA Xiaobo, XU Xiaoyan. Advances in Research of High-strength and High-conductivity Cu-Nb Composite Wires Used for Pulsed Magnets. Materials Reports, 2023, 37(8): 21120237-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120237  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21120237
1 Sadhukhan M, Deb B M. Journal of the Indian Chemical Society, 2021, 98, 100112.
2 Chen X F, Liao J K, Xiao H X, et al. Thin-Walled Structures, 2021, 162, 107621.
3 Wang P F, Liang M, Xu X Y, et al. International Journal of Minerals, Metallurgy and Materials, 2021, 28(2), 279.
4 Peng T, Li L, Physics,2016, 45(1), 11(in Chinese).
彭涛, 李亮.物理, 2016, 45(1), 11.
5 Kapitza P L, Rutherford E. Collected Papers of P. L. Kapitza, 1964, 1, 78.
6 Foner S. Applied Physics Letters, 1986, 49(15), 982.
7 Sakai Y, Schneider-Muntau H J. Acta Materialia, 1997, 45(3), 1017.
8 Lagutin A S, Rosseel K, Herlach F, et al. Physica B, 2004, 346-347, 599.
9 Lecouturier F, Spencer K, Thilly L, et al. Physica B, 2004, 346-347, 582.
10 Zherlitsyn S, Wustmann B, Herrmannsdörfer T, et al. Journal of Low Temperature Physics, 2013, 170, 447.
11 Han X T, Peng T, Ding H F, et al. Matter and Radiation at Extremes, 2017, 2, 278.
12 Wang Y, Xing Z G, Huang Y F, et al. Journal of Magnetism and Magnetic Materials,2021,538,168248.
13 Shao Q, Wang G, Wang H D, et al. Materials Science & Engineering A, 2021, 799,140143.
14 Zhu B J, Zhang Z, Jiang W M, et al. High Energy Density Physics, 2020, 37,100900.
15 Sun Y Q, Peng L J, Huang G J, et al. Materials Science and Engineering A, 2020, 776,139009.
16 Huang S, Xu Q. Journal of Nuclear Materials, 2020, 533,152085.
17 Thang Q, Tran T Q, Lee J K Y, Chinnappan A, et al. Journal of Mate-rials Science & Technology, 2020, 42, 46.
18 Spencer K, Lecouturier F, Thilly L, et al. Advanced Engineering Mate-rials, 2004, 6(5), 290.
19 Duboi J B, Thilly L, Lecouturier F, et al. IEEE Transactions on Applied Superconductivity, 2012, 22(3), 6900104.
20 Liu J B, Zeng Y W, Meng L. Journal of Alloys and Compounds, 2009, 468(1-2), 73.
21 Bevk J, Harbison J P, Bell J D. Journal of Applied Physics, 1978, 49(12), 6031.
22 Pelton A R, Laabs F C, Spitzig W A, et al. Ultramicroscopy, 1987, 22, 251.
23 Shikov A, Pantsyrnyi V, Vorobieva A, et al. Physica C, 2001, 354, 410.
24 Pantsyrnyi V, Shikov A, Vorobieva A, et al. Physica B, 2001, 294-295, 669.
25 Karasek K R, Bevk J. Scripta Metallurgica, 1979, 13, 259.
26 Zhao C C, Rongmei Niu R M, Xin Y, et al. Materials Science & Engineering A, 2021,799, 140091.
27 Li S, Olszta M, Li L, et al. Scripta Materialia, 2021, 205, 114214.
28 Dupouy F, Snoeck E, CasanoveM J, et al. Scripta Materialia, 1996, 34(7), 1067.
29 Thilly L, Lecouturier F, Coffe G, et al. Physica B, 2001, 294-295, 648.
30 Filgueira M, Pinatti D G. Journal of Materials Processing Technology, 2002, 128, 191.
31 Liang M. Preparation and properties of Cu-Nb (Sn) materials for high magnetic field. Ph.D. Thesis, Northwestern Polytechnical University, China, 2010 (in Chinese).
梁明. 强磁场用铜铌(锡)材料的制备及性能研究. 博士学位论文, 西北工业大学,2010.
32 Liang M, Wang P F, Xu X Y, et al. IEEE Transactions on Applied Superconductivity, 2020, 30(4), 4301004.
33 Liang M, Xu X Y, Wang P F, et al. Rare Metal Materials and Enginee-ring,2017, 46(3), 699 (in Chinese).
梁明, 徐晓燕, 王鹏飞, 等. 稀有金属材料与工程, 2017, 46(3), 699.
34 Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. International Journal of Fatigue, 2019, 128, 105188.
35 Guryev V V, Polikarpova M V, Lukyanov P A. Cryogenics, 2018, 90, 56.
36 Lei X J, Wang X P, Kong F T, et al. Corrosion Science, 2021,186, 109316.
37 Hong S I, Hill M A. Materials Science and Engineering A, 2000, 281,189.
38 Gu T, Medy J R, Klosek V. International Journal of Plasticity, 2019, 122,1.
39 Wang P F, Liang M, Xu X Y, et al. IEEE Transactions on Applied Superconductivity, 2019, 29(4), 6000205.
40 Shishvan S S. International Journal of Plasticity, 2021, 136, 102876.
41 Deng L P, Yang X F, Han K, et al. Materlals Characterization, 2013, 81,124.
42 Gao R, Jin M M, Han F, et al. Acta Materialia, 2020, 197, 212.
43 Liao Z R, Polyakov M, Diaz O G, et al. Acta Materialia, 2019, 180, 2.
44 Deng L P, Liu Z F, Wang B S, et al. Materials Characterization, 2019, 150, 62.
45 Sauvage X, Renaud L, Deconihout B, et al. Acta Materialia, 2001, 49, 389.
46 Wang W Y, Xiao Z, Lei Q, et al. Materials Characterization, 2021, 182,111565.
47 Sandim M J R, Shigue C Y, Ribeiro L G, et al. IEEE Transactions on Applied Superconductivity, 2002, 12(1), 1195.
48 Wang W J, Qin J G, Yu M, et al. Fusion Engineering and Design, 2021, 165,112248.
49 Wang W J, Qin J G, Xiao G Y, et al. Fusion Engineering and Design, 2020,157,111693.
50 Deng L P, Han K, Wang B S, et al. Acta Materialia, 2015, 101, 181.
51 Lei R S, Wang M P, Guo M X, et al. Transactions of Nonferrous Metals Society of China, 2009, 19, 272.
52 Sandim H R Z, Sandim M J R, Bernardi H H, et al. Scripta Materialia, 2004, 51,1099.
53 Badinier G, Sinclair C W, Allain S, et al. Materials Science and Engineering A, 2014, 597, 10.
54 Huang J, Li W G, He Y, et al. Composite Structures, 2021, 267,113890.
55 Cao Z, Cheng Z, Xu W, et al. Journal of Materials Science & Technology, 2022,103, 67.
56 Huang T L, Shuai L F, Wakeel A, et al. Acta Materialia, 2018, 156, 369.
57 Laubea S, Kauffmanna A, Ruebeling F, et al. Acta Materialia, 2020, 185, 300.
58 Heringhaus F, Raabe D. Journal of Materials Processing Technology, 1996, 59(4), 367.
59 Thilly L, Veron M, Ludwing O, et al. Philosophical Magazine A, 2002, 82(5), 929.
60 Wang J, Hoagland R G, Hirth J P, et al. Acta Materialia, 2008, 56(19), 5685.
61 Liang M, Lu Y F, Chen Z L, et al. IEEE Transactions on Applied Superconductivity, 2010, 20(3),1619.
62 Zhang J Y, Zhang P, Zhang X, et al. Materials Science and Engineering A, 2012, 545,118.
63 Deng L P, Han K, Hartwig K T, et al. Journal of Alloys and Compounds, 2014, 602, 331.
64 Misra A, Hirth J P, Hoagland R G. Acta Materialia, 2005, 53, 4817.
65 Mao Q Z, Wang L, Nie J F, et al. Composites Part B, 2022, 231,109567.
66 Pantsyrnyi V I. IEEE Transactions on Applied Superconductivity, 2002, 12(1),1189.
67 Gu T, Medy J R, Volpi F, et al. Acta Materialia, 2017, 141, 131.
68 Guryev V V, Polikarpova M V, Lukyanov P A, et al. Cryogenics, 2018, 90, 56.
69 Botcharova E, Freudenberger J, Schultz L. Acta Materialia, 2006, 54, 3333.
70 Raabe D. Computational Materials Science, 1995, 3, 402.
[1] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[2] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[3] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[4] 张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed