Abstract: The catalytic oxidations of α-C-H bond in o-nitro-substituted arenes and p-nitro-substituted arenes (toluene, ethylbenzene and cumene) by iron porphyrin were studied using density functional theory. The calculation results were compared with those of α-C-H bond oxidation in arenes without nitro substituent. The reactivity difference of α-C-H bond oxidation between o-nitro-substituted arenes and p-nitro-substituted arenes catalyzed by iron porphyrin were focused on and the essential factors affecting the reactivity were explored. By calculating the bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation in arenes by iron porphyrin, it is found that the conjugation effect between nitro and benzene ring in p-nitro-substituted arenes reduce the bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation by high-valent iron-oxo porphyrin. In o-nitro-substituted arenes, there are not only conjugation effect, but also steric hindrance effect. The steric hindrance effect is dominant in o-nitro-substituted arenes. The bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation by high-valent iron-oxo porphyrin increase due to the steric hindrance effect. Further decomposition of the activation energy of α-C-H bond oxidation reveals that the interaction energy between the arene and high-valent iron-oxo porphyrin in the transition structure is relatively weak and the distortion energy is the main factor affecting the activation energy. The distortion energy mainly comes from the distortion of the arene molecule.
郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
GUO Jing, SONG Xufeng, YU Yanmin, GAO Qianqian. Density Functional Theory Study on α-C-H Bond Oxidation of o-Nitro-Substituted Arenes and p-Nitro-Substituted Arenes Catalyzed by Iron Porphyrin. Materials Reports, 2023, 37(8): 21110223-6.
1 Lv X D, Xiao G B, Feng X X, et al. Dyes and Pigments, 2019, 160, 957. 2 Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056), 629. 3 Yuan Q T, Yu Y M, Song X F. Material Reports, 2021, 35(9), 9210 (in Chinese). 袁清堂, 于艳敏, 宋旭锋.材料导报, 2021, 35(9), 9210. 4 Farinone M, Urbańska K, Pawlicki M. Molecules, 2020, 25(19), 4523. 5 Ji D F, Shi T T, Chang H,et al. Material Reports A:Review Papers, 2018, 32(9), 3068 (in Chinese). 姬东方, 史婷婷, 常欢, 等.材料导报:综述篇, 2018, 32(9), 3068. 6 Can F, Demirci O C, Dumoulin F, et al. Applied Surface Science, 2017, 420, 625. 7 Huang X Y, Groves J T. Journal of Biological Inorganic Chemistry, 2017, 22(2-3), 185. 8 Wang Q M, Chen X H, Li G J, et al. Journal of Organic Chemistry, 2019, 84(21), 13755. 9 Fang K, Li G J, She Y B. Journal of Organic Chemistry, 2018, 83(15), 8092. 10 Yang F Z, Zhang H, Liu X R, et al. Chinese Journal of Organic Chemistry, 2019, 39(1), 59 (in Chinese). 杨帆致, 张晗, 刘旭日, 等.有机化学, 2019, 39(1), 59. 11 Lubov D P, Talsi E P, Bryliakov K P. Russian Chemical Reviews, 2020, 89(6), 587. 12 Deng W, Wan Y P, Jiang H, et al. Catalysis Letters, 2014, 144(2), 333. 13 Riaz S, Nasir M, Iqbal J, et al. Research on Chemical Intermediates, 2015, 41(9), 6283. 14 Shen H M, Qi B, Hu M Y, et al. Catalysis Letters, 2020, 150(11), 3096. 15 Wang P, She Y B, Fu H Y, et al. Russian Journal of Applied Chemistry, 2015, 88(5), 885. 16 Yang Y N, Li G J, Mao X B, et al. Organic Process Research & Development, 2019, 23(5), 1078. 17 Shen H M, Liu L, Qi B, et al. Molecular Catalysis, 2020, 493, 111102. 18 Shen H M, Liu L, Qi B, et al. Applied Catalysis A:General, 2020, 599, 117599. 19 Chen Z H, Qin H, Yang P, et al. Journal of Functional Materials, 2022, 53(12), 12092 (in Chinese). 陈梓慧,秦撼,杨鹏,等. 功能材料,2022, 53(12), 12092. 20 He Z W, Tian H, Huang Z J,et al. Material Reports B:Research Papers, 2020, 34(3), 6180 (in Chinese). 何正文, 田红, 黄章俊, 等.材料导报:研究篇, 2020, 34(3), 6180. 21 Wang H, Ji D F, Yu Y M, et al. Chemical Industry and Engineering Progress, 2020, 39(10), 4002 (in Chinese). 王浩, 姬东方, 于艳敏, 等.化工进展, 2020, 39(10), 4002. 22 Groves J T, McClusky G A. Journal of the American Chemical Society, 1976, 98(3), 859. 23 Schröder D, Shaik S, Schwarz H. Accounts of Chemical Research, 2000, 33(3), 139. 24 Shaik S, Cohen S, De Visser S P, et al. European Journal of Inorganic Chemistry, 2004, 2004(2), 207. 25 De Visser S P. Chemistry-A European Journal, 2006, 12(31), 8168. 26 Hazan C, Kumar D, De Visser S P, et al. European Journal of Inorganic Chemistry, 2007, 2007(18), 2966. 27 Filatov M, Harris N, Shaik S. Journal of the Chemical Society, Perkin Transactions 2, 1999(3), 399. 28 Shaik S, De Visser S P, Ogliaro F, et al. Current Opinion in Chemical Biology, 2002, 6(5), 556. 29 Meunier B, De Visser S P, Shaik S. Chemical Reviews, 2004, 104(9), 3947. 30 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, revision. A.03. , Gaussian, Inc.: Wallingford CT, 2016. 31 Lee C, Yang W T, Parr R G. Physical Review B, 1988, 37(2), 785. 32 Becke A D. Journal of Chemical Physics, 1992, 96(3), 2155. 33 Becke A D. Journal of Chemical Physics,1992, 97(12), 9173. 34 Becke A D. Journal of Chemical Physics, 1993, 98(7), 5648. 35 Kang Y, Chen H, Jeong Y J, et al. Chemistry-A European Journal, 2009, 15(39), 10039. 36 Cho K B, Hirao H, Shaik S, et al. Chemical Society Reviews, 2016, 45(5), 1197. 37 Hay P J, Wadt W R. Journal of Chemical Physics, 1985, 82(1), 299. 38 Ehlers A W, Böhme M, Dapprich S, et al. Chemical Physics Letters, 1993, 208(1-2), 111. 39 Roy L E, Hay P J, Martin R L. Journal of Chemical Theory and Computation, 2008, 4(7), 1029. 40 Ditchfield R, Hehre W J, Pople J A. Journal of Chemical Physics, 1971, 54(2), 724. 41 Hehre W J, Ditchfield R, Pople J A. Journal of Chemical Physics, 1972, 56(5), 2257. 42 Hariharan P C, Pople J A. Theoretica Chimica Acta, 1973, 28, 213. 43 Marenich A V, Cramer C J, Truhlar D G. Journal of Physical Chemistry B, 2009, 113(18), 6378. 44 Ess D H, Houk K N. Journal of the American Chemical Society, 2007, 129(35), 10646.