Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21120239-8    https://doi.org/10.11896/cldb.21120239
  低碳生态路面材料 |
高掺量废胎胶粉改性沥青性能研究
徐光霁1, 范剑伟1, 马涛1,*, 朱雅婧1, 李树仁2
1 东南大学交通学院,南京 211189
2 安徽省公路桥梁工程有限公司,合肥 230031
Study on Performances of Asphalt Modified by High Content Waste Tire Rubber Powder
XU Guangji1, FAN Jianwei1, MA Tao1,*, ZHU Yajing1, LI Shuren2
1 School of Transportation, Southeast University, Nanjing 211189, China
2 Anhui Highway and Bridge Engineering, Co., Ltd., Hefei 230031, China
下载:  全 文 ( PDF ) ( 18019KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将废旧轮胎制成废胎胶粉用于制备橡胶沥青,可实现废旧轮胎的在路面中的资源化利用。本工作制备了不同芳烃油掺量、反应温度和反应时间下的高掺量废胎胶粉改性橡胶沥青试样,设计溶解度试验并结合扫描电镜(SEM)试验,研究了胶粉与沥青反应程度和所制备橡胶沥青存储稳定性的相关性。进一步测试了橡胶沥青的三大指标、弹性恢复、高温粘度指标在反应过程中的变化趋势,并与基质沥青、苯乙烯-丁二烯嵌段共聚物(SBS)改性沥青和不含芳烃油的中高掺量橡胶沥青对比,从而确定以芳烃油为助剂的高掺量橡胶沥青的制备参数。结果表明,添加芳烃油可有效提高35%(质量分数,下同)橡胶沥青的存储稳定性,保障施工和易性。相比于软化点差,车辙因子比更适合用于评价高掺量橡胶沥青的存储稳定性。所制备高掺量橡胶沥青的溶解度与其存储稳定性有明显的相关性。芳烃油的加入对35%橡胶沥青的高低温性能有不利影响,但当芳烃油掺量控制在5%~7.5%时,其高低温性能仍接近SBS改性沥青。高掺量废胎胶粉改性橡胶沥青的制备参数可确定为:剪切转速为800 r/min,废轮胎胶粉和芳烃油掺量分别为橡胶沥青总质量的35%和5%~7.5%,反应温度为230 ℃,反应时间为225 min。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐光霁
范剑伟
马涛
朱雅婧
李树仁
关键词:  芳烃油  高掺量  废胎胶粉  制备参数  橡胶沥青    
Abstract: The waste tire rubber powder made from waste tires can be used to prepare rubber asphalt, which can realize the resource utilization of waste tires in pavement. In this work, asphalt samples modified by waste tire rubber powder with different aromatic oil contents, reaction temperatures and reaction times were prepared. The solubility test was designed and combined with scanning electron microscope (SEM) test to study the correlation between the reaction degree of rubber powder and the storage stability. The change trends of penetration, ductility, softening point, elastic recovery and high temperature viscosity indexes of rubber asphalt in the reaction process were tested, and the index values were compared with those of matrix asphalt, SBS modified asphalt and medium/high content rubber asphalt without aromatic oil, so as to determine the preparation parameters of high content rubber asphalt with aromatic oil. The results show that adding aromatic oil effectively improves the storage stability of 35% rubber asphalt and ensures its workability of construction. Rutting factor ratio is more suitable to evaluate the storage stability of high content rubber asphalt than softening point difference index. The solubility of high content rubber asphalt has an obvious correlation with its storage stability. The addition of aromatic oil has an adverse effect on high and low temperature performances of 35% rubber asphalt, but when the content of aromatic oil is within 5%—7.5%, its high and low temperature performance is still close to SBS modified asphalt. The preparation parameters of high content waste tire rubber asphalt can be determined as follows: the shear speed is 800 r/min, the content of waste tire rubber powder and aromatic oil is 35% and 5%—7.5% of the total mass of rubber asphalt respectively, the reaction temperature is 230 ℃, and the reaction time is 225 min.
Key words:  aromatic oil    high content    waste tire rubber powder    preparation parameters    rubber asphalt
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 国家自然科学基金(51808116);东南大学优秀青年教师科学研究资助项目(2242021R41132)
通讯作者:  *matao@seu.edu.cn   
作者简介:  徐光霁,东南大学交通学院副教授、硕士研究生导师。2009年和2012年于武汉理工大学分别获得工学学士学位和硕士学位,2017年5月于美国罗格斯大学获得博士学位。主要研究领域为道路材料多尺度分析与表征、沥青路面养护新材料及技术、道路绿色再生技术、道路材料模型与数值计算。近五年来公开发表学术论文18篇。马涛,东南大学交通学院教授、博士研究生导师,国家优青,交通运输部中青年科技创新领军人才。2004年和2010年于东南大学交通学院分别获得学士和博士学位。目前主要从事道路数字化建模与多尺度仿真、功能性路面材料与智能化道路、路面结构智能感知与无损检测、沥青路面智慧运维与绿色管养、沥青路面智能化施工管控技术等研究。发表SCI/EI学术论文100余篇,入选2020中国高被引学者,授权国家发明专利40余项。
引用本文:    
徐光霁, 范剑伟, 马涛, 朱雅婧, 李树仁. 高掺量废胎胶粉改性沥青性能研究[J]. 材料导报, 2022, 36(16): 21120239-8.
XU Guangji, FAN Jianwei, MA Tao, ZHU Yajing, LI Shuren. Study on Performances of Asphalt Modified by High Content Waste Tire Rubber Powder. Materials Reports, 2022, 36(16): 21120239-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120239  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21120239
1 Dong R K, Qi C P, Zheng K J, et al. China Journal of Highway and Transport, 2017, 30(10),32(in Chinese).
董瑞琨,戚昌鹏,郑凯军,等.中国公路学报, 2017,30(10),32.
2 Wang H, You Z, Mills-Beale J, et al. Construction and Building Mate-rials, 2012, 26(1),583.
3 Ma T, Chen C L, Zhang Y, et al. China Journal of Highway and Transport, 2021, 34(10),1(in Chinese).
马涛,陈葱琳,张阳,等. 中国公路学报,2021, 34(10),1.
4 Ding X, Chen L, Ma T, et al. Construction and Building Materials, 2019, 203,552.
5 Oliveira J, Silva H, Abreu L, et al. Journal of Cleaner Production, 2013, 41,15.
6 Zhu Y F, Jiang P. Materials Reports B: Research Papers, 2016, 30(6), 134(in Chinese).
朱月风,姜鹏. 材料导报:研究篇, 2016, 30(6),134.
7 Li X, Jian C, Que G. Construction and Building Materials, 2009, 23(12),3586.
8 Yin L, Yang X, Shen A, et al. Construction and Building Materials, 2020, 267, 120773.
9 Li J, Chen Z, Xiao F. Resources Conservation and Recycling, 2021,169,105518.
10 Yang X L, Li B, Liu X, et al. Journal of Building Materials, 2017,20(4),640(in Chinese).
杨小龙,李波,刘祥,等. 建筑材料学报, 2017, 20(4), 640.
11 He L, Huang X, Ma Y, et al. Journal of Southeast University (Natural Science Edition), 2011, 41(5),1086(in Chinese).
何亮,黄晓明,马育,等. 东南大学学报:自然科学版, 2011, 41(5), 1086.
12 Xu P, Gao J, Pei J, et al. Construction and Building Materials, 2021, 282,122641
13 He L, Li G N, Zheng Y F, et al. Materials Reports A: Review Papers, 2020, 34(10),11(in Chinese).
何亮,李冠男,郑雨丰,等. 材料导报:综述篇, 2020, 34(10),11.
14 Wang H, Liu X, Lu G, et al. Construction and Building Materials, 2020, 239, 117824.
15 Wang H, Apostolidis P, Zhu J, et al. International Journal of Pavement Engineering, 2020(4), 1724289.
16 Jamal M, Martinez-Arguelles G, Giustozzi F. Construction and Building Materials, 2021, 304,124638
17 Zhang Q, Hou D H, Shi J C. Materials Reports, 2019,33(S2),247(in Chinese).
张庆,侯德华,史纪村. 材料导报, 2019, 33(S2), 247.
18 Ming L, Xue X, Fan W, et al. Construction and Building Materials, 2015, 74,124.
19 Yin J, Wang S, Lyu F. Construction and Building Materials,2013,49(1),712.
20 Zhu J, Ma T, Zhen D. Construction and Building Materials, 2020, 234, 117426.
[1] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[2] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[3] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed