Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 110-115    https://doi.org/10.11896/j.issn.1005-023X.2018.01.013
  物理   材料综述 |材料 |
铼在镍基高温合金中作用机理的研究现状
丁青青,余倩,李吉学,张泽()
浙江大学材料科学与工程学院,电镜中心,杭州 310027
Research Progresses of Rhenium Effect in Nickel Based Superalloys
Qingqing DING,Qian YU,Jixue LI,Ze ZHANG()
Center of Electron Microscopy, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
下载:  全 文 ( PDF ) ( 981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

镍基单晶高温合金因其优异的高温力学性能、抗热腐蚀性能成为航空发动机中不可替代的涡轮叶片材料,少量稀有元素铼(Re)能大幅提高镍基高温合金的承温能力和力学性能,这一现象被称为“铼效应”。近几十年来,铼效应的强化机理备受关注,简要综述了国内外关于铼元素在高温合金中分布特征的研究进展及对应的铼强化机理,并展望了镍基高温合金中铼效应的研究趋势及挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁青青
余倩
李吉学
张泽
关键词:  铼效应  镍基高温合金  强化机理    
Abstract: 

Nickel based single crystalline superalloys are irreplaceable materials for blades of aero-engines due to their superior mechanical properties and corrosion resistance at high temperature. A small amount of rhenium (Re) can significantly improve both temperature capability and mechanical properties of nickel superalloys which is referred to as “Re effect”. This paper briefly reviews research progresses on the distribution of Re in nickel superalloys, and the corresponding strengthening mechanisms. A discussion on the future researches and challenges on the study of “rhenium effect” are prospected.

Key words:  rhenium effect    nickel based superalloys    strengthening mechanism
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG146.4+18  
基金资助: 国家自然科学基金(11227403)
作者简介:  丁青青:女,1992年生,博士研究生,主要从事含铼镍基单晶高温合金微观结构演变的研究
引用本文:    
丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys. Materials Reports, 2018, 32(1): 110-115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.013  或          http://www.mater-rep.com/CN/Y2018/V32/I1/110
  
[1] Reed R C. The supealloys: Fundamentals and applications[M]. New York: Cambridge University Press, 2006: 147.
[2] Erickson G L. The development of CMSX-10, a third generation SX casting superalloy [C]∥Proceedings of the second Pacific Rim International Conference on Advanced Materials and Processing. Korea, 1995: 35.
[3] Smashey. Composite eutectic alloy and article:US,3904402[P]. 1975-09-09.
[4] W?llmer S, Mack T, Glatzel U., , Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy[J].Materials Science and Engineering:A 2001,319- 321:792.
[5] Wanderka N, Glatzel U . Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy[J]. Materials Science and Engineering: A, 1995,203(1-2):69.
[6] Blavette D, Cadel E, Deconihout B . The role of the atom probe in the study of nickel-based superalloys[J]. Materials Characterization, 2000,44(1-2):133.
[7] Blavette D, Cadel E, Pareige C , et al. Phase transformation and segregation to lattice defects in Ni-base superalloys[J]. Microscopy and Microanalysis, 2007,13(6):464.
[8] Blavette D, Caron P, Khan T . An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J]. Scripta Metallurgica, 1986,20(10):1395.
[9] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Materials Science and Engineering: A, 1998,250(1):88.
[10] Mottura A, Warnken N, Miller M K , et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys[J]. Acta Materialia, 2010,58(3):931.
[11] Rüsing J, Wanderka N, Czubayko U , et al. Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy[J]. Scripta Materialia, 2002,46(3):235.
[12] Ge B H, Luo Y S, Li J R , et al. Distribution of rhenium in a single crystal nickel-based superalloy[J]. Scripta Materialia, 2010,63(10):969.
[13] Link T, Epishin A, Paulisch M , et al. Topography of semicoherent γ/γ'-interfaces in superalloys: Investigation of the formation mechanism[J]. Materials Science and Engineering: A, 2011,528(19-20):6225.
[14] Parsa A B, Wollgramm P, Buck H , et al. Ledges and grooves at γ/γ' interfaces of single crystal superalloys[J]. Acta Materialia, 2015,90:105.
[15] Mottura A, Wu R T, Finnis M W , et al. A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopy[J]. Acta Materialia, 2008,56(11):2669.
[16] Mottura A, Finnis M W, Reed R C . On the possibility of rhenium clustering in nickel-based superalloys[J]. Acta Materialia, 2012,60(6-7):2866.
[17] Tian S, Su Y, Qian B , et al. Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re[J]. Materials & Design, 2012,37(10):236.
[18] Yuan Y, Kawagishi K, Koizumi Y , et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800 ℃[J]. Materials Science and Engineering: A, 2014,608:95.
[19] Blavette D, Khan T. An atom-probe study of some fine-scale microstructure features in Ni-based single crystal Superalloys [C]∥Pittsburgh, 1988: 304.
[20] Pollock T M, Argon A S . Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica et Materialia, 1992,40(1):1.
[21] Zhu Z, Basoalto H, Warnken N , et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys[J]. Acta Materialia, 2012,60(12):4888.
[22] Janotti A Kr c ˙ mar M,Fu C L, , et al. Solute diffusion in metals: Larger atoms can move faster [J]. Physical Review Letters, 2004,92(8):085901.
[23] Mottura A, Reed R C . What is the role of rhenium in single crystal superalloys?[J]. MATEC Web of Conferences, 2014,14:01001.
[24] Zhang J X, Murakumo T, Harada H, et al. Creep deformation mechanisms in some modern single-crystal superalloys [C]∥Superalloys 2004. Pittsburgh, 2004.
[25] Durst K, G?ken M, Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys[J].Materials Science and Engineering:A , 2004, 387- 389:312.
[26] Gan B, Tin S . Assessment of the effectiveness of transition metal solutes in hardening of Ni solid solutions[J]. Materials Science and Engineering: A, 2010,527(26):6809.
[27] Sun F, Zhang J, Mao S , et al. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration[J]. Journal of Alloys and Compounds, 2015,618:750.
[28] Huang M, Cheng Z, Xiong J , et al. Coupling between Re segregation and γ/γ' interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy[J]. Acta Materialia, 2014,76(37):294.
[1] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed