Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 116-121    https://doi.org/10.11896/j.issn.1005-023X.2018.01.014
  物理   材料综述 |材料 |
形变诱发纳米晶局域固态非晶化的研究进展
席文(),陈铮,胡石
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials
Wen XI(),Zheng CHEN,Shi HU
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

形变诱发纳米晶金属材料局域固态非晶化转变是近年来提出的获得局域固态非晶化组织的一种新途径,这种转变机制使得以位错、变形孪晶、晶界滑动和晶粒转动为主要变形机制的纳米晶材料中可能存在一种全新的塑性变形机制,并且,局域固态非晶化的临界转变条件和转变机制可为材料的结构优化设计提供依据。概括了国内外实验及数值模拟手段关于形变诱发局域固态非晶化转变的研究,例如采用机械球磨、高压扭转变形、经典力场和分子动力学等方法,证明了形变诱发局域固态非晶化转变的存在。此外,还分析了发生局域固态非晶化转变的内在机制。基于晶体相场模型的优势,提出用该方法模拟局域固态非晶化转变的突出之处,表明了晶体相场法能够有效研究局域固态非晶化转变过程。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席文
陈铮
胡石
关键词:  纳米晶  数值模拟  局域固态非晶化    
Abstract: 

Localized solid-state amorphization (LSSA) transformation of nanocrystalline materials induced by mechanical deformation is proposed to obtain localized amorphous structure in recent years. This new method forms an entirely new plastic deformation mechanism in nanocrystalline materials with dislocation, deformation twinning, grain boundary slide and grain rotation as the main deformation mechanism. The critical transformation condition and the transition mechanism of the LSSA transformation provide a basis for the optimum structural design of materials. This paper summarizes the domestic and foreign experimental and simulative studies of deformation-induced LSSA transformation, such as mechanical ball milling, high-voltage torsional deformation, classical force field and molecular dynamics methods, which prove existence of the deformation-induced LSSA transformation. Also, the intrinsic mechanism of LSSA transformation is analyzed. Based on the advantages of the crystal phase field model, this method is proposed to simulate the LSSA transformation and the crystal phase field method can effectively study the LSSA transformation process.

Key words:  nanocrystalline    numerical simulation    localized solid-state amorphization
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG113.11  
基金资助: 国家自然科学基金(51474176)
作者简介:  席文:女,1991年生,硕士研究生,研究方向为纳米晶局域非晶化转变的模拟 E-mail: xixiwen0628@163.com
引用本文:    
席文,陈铮,胡石. 形变诱发纳米晶局域固态非晶化的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 116-121.
Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials. Materials Reports, 2018, 32(1): 116-121.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.014  或          https://www.mater-rep.com/CN/Y2018/V32/I1/116
  
  
  
  
[1] Zhang Zhefeng, Wu Fufa, Fan Jitang , et al. Deformation and fracture of amorphous alloy[J].China Academic Journal, 2008(4):349(in Chinese).
[1] 张哲峰, 伍复发, 范吉堂 , 等. 非晶合金材料的变形与断裂[J].中国科学, 2008(4):349.
[2] Ikeda H, Qi Y, Cagin T , et al. Strain rate induced amorphization in metallic nanowires[J]. Physical Review Letters, 1999,82(14):2900.
[3] Han Shuang, Zhao Lei, Jiang Qing , et al. Deformation-induced localized solid-state amorphization in nanocrystalline nickel[J]. Scientific Reports, 2012,2(7):134.
[4] William L J . Bulk glass forming metallic alloys science and technology[J]. Science and Technology, 1999,24(10):42.
[5] Wang Chao . Study on the characteristics of bulk amorphous alloy structure evolution as stress induced[D]. Xi’an: Chang’an University, 2014(in Chinese).
[5] 王超 . 块体非晶合金中应力诱发的结构演化特性研究[D]. 西安:长安大学, 2014.
[6] Yan Xiangquan, Song Xiaoyan, Zhang Jiuxing . Review on development of bulk amorphous alloys Rare Metal Materials and Engineering, 2008,37(5):931(in Chinese).
[6] 闫相全, 宋晓艳, 张久兴 . 块体非晶合金材料的研究进展[J]. 稀有金属材料与工程, 2008,37(5):931.
[7] Wang Weihua . The essence and characteristics of amorphous materials Progress in Physics, 2013,33(5):199(in Chinese).
[7] 汪卫华 . 非晶态物质的本质和特性[J]. 物理学进展, 2013,33(5):199.
[8] Greer. Greer . Mtallic glasses[J]. Frontiers in Materials Science, 1995,267(5206):412.
[9] Li Zhong, Wang Jiangwei, Sheng Hongwei , et al. Formation of monatomic metallic glasses through ultrafast liquid quenching[J]. Nature, 2014,512(7513):177.
[10] KavehE, Toh S, Makoto A , et al. High-pressure torsion of pure cobalt Hcp-fcc phase transformations and twinning during severe plastic deformation[J]. Applied Physics Letters, 2013,102(18):181181.
[11] PeterlechnerM, Waitz T, Karnthaler P H . Nanoscale amorphization of severely deformed NiTi shape memory alloys[J]. Scripta Materialia, 2009,60(12):1137.
[12] YangX Y, Wu Y K, Ye H Q . Localized amorphization in SiC induced by ball milling[J]. Journal of Materials Science Letters, 2001,20(16):1517.
[13] YeChang, Liu Yang, Sang Xiahan , et al. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening[J]. Journal of Applied Physics, 2015,118(13):134134.
[14] WuX, Tao N, Hong Y , et al. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition[J]. Journal of Physics D—Applied Physics, 2005,38(22):4140.
[15] ZhangY S, Zhang L C, Niu H Z , et al. Deformation twinning and localized amorphization in nanocrystalline tantalum induced by sliding friction[J]. Materials Letters, 2014,127(27):4.
[16] ImadaK, Ishimaru M, Sato K . Atomistic structures of nano engineered SiC and radiation induced amorphization resistance[J]. Journal of Nuclear Materials, 2015,465:433.
[17] WangX, Jamison L, Sridharan K . Evidence for cascade overlap and grain boundary enhanced amorphization in siliconcarbide irradiated with Kr ions[J]. Acta Materialia, 2015,99:7.
[18] HuY, Li Z C, Zhang Z J . Irradiation induced localized amorphization in Mo-Re alloy films[J]. Materials Transactions, 2010,51(4):670.
[19] LiuY, Wang Y, Suo X . Impact induced bonding and boundary amorphization of TiN ceramic particles Impact induced bonding and boundary amorphization of TiN ceramic particles during room temperature vacuum cold spray deposition[J]. EMBO Journal, 2015,21(1-2):22.
[20] 20Ovid'ko L A . Nanoscale amorphization as a special deformation mode in nanowires[J]. Scripta Materialia, 2012,66(6):402.
[21] KohA J, Heow-Pueh L . Shock induced localized amorphization in metallic nanorods with strain rate dependent characteristics[J]. Nano Letters, 2006,6(10):2260.
[22] YoshihiroN, Oohashi K, Toyoshima T , et al. Strain induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Structural Geology, 2015,72:142.
[23] SubhashG A . Influence of stress state and strain rate on structural amorphization in boron carbide[J]. Journal of Applied Physics, 2012,111(100):2941.
[24] LuoXiaotao, Yang Guanjun, Li Changjiu . High strain rate induced localized amorphization in cubic BN/NiCrAl nanocomposite through high velocity impact[J]. Scripta Materialia, 2011,65(7):581.
[25] MeldrumA, Boatner L A, Ewing R C . Nanocrystalline zirconia can be amorphized by ion irradiation[J]. Physical Review Letters, 2002,88(2):237.
[26] SwamyV, Kuznetsov A, Dubrovinsky L S , et al. Size dependent pressure induced amorphization in nanoscale TiO2[J]. Physical Review Letters, 2006,96(13):135135.
[27] ZhaoY H . Thermodynamic model for solid-state amorphization of pure elements by mechanical-milling[J]. Journal of Non-crystalline Solids, 2006,352(52):5578
[28] YanX Q, Tang Z, Zhang L , et al. Depressurization amorphization of single crystal boron carbide[J]. Physical Review Letters, 2009,102(7):075075
[29] FanZ, Yu H, Li C . Interface and grain-boundary amorphization in the Al/Fe bimetallic system during pulsed-magnetic-driven impact[J]. Scripta Materialia, 2015,110:14.
[30] ElderK R, Grant M . Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals.[J]. Physical Review E, 2003,70(1):051605.
[31] YingjunG, Zhirong L, Lilin H , et al. Phase field crystal study of nano-crack growth and branch in materials[J]. Modelling & Simulation in Materials Science & Engineering, 2016,24(5):055010.
[32] HuS, Xi W, Chen Z , et al. Coupled motion of grain boundaries and the influence of microcracks[J]. Computational Materials Science, 2017,132:125.
[33] ZhaoS, Hahn E N, Kad B , et al. Amorphization and nanocrystallization of silicon under shock compression[J]. Acta Materialia, 2016,103:519.
[34] StraumalB B, Mazilkin A A, Protasova S G , et al. Amorphization of crystalline phases in the NdFeB alloy driven by the high pressure torsion[J]. Materials Letters, 2015,161:735.
[35] StraumalB B, Kilmametov A R, Mazilkin A A , et al. Amorphization of NdFeB alloy under the action of high pressure torsion[J]. Materials Letters, 2015,145:63.
[36] FanZhisong, Yu Haiping, Li Chunfeng . Interface and grain boundary amorphization in the AlFe bimetallic system during pulsed magnetic driven impact[J]. Scripta Materialia, 2016,110:14.
[37] DevanathanR, Durham P, Du J , et al. Molecular dynamics simulation of amorphization in forsterite by cosmic rays[J]. Nuclear Instruments & Methods in Physics Research B, 2007,255(1):172.
[38] ZhaoS, Kad B, Hahn E N , et al. Pressure and shear induced amorphization of silicon[J]. Extreme Mechanics Letters, 2015,5:74.
[39] ZhouJ, Averback R S, Bellon P . Stability and amorphization of CuNb interfaces during severe plastic deformation:Molecular dynamics simulations of simple shear[J]. Acta Materialia, 2014,73(4):116.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[4] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[5] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[6] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[7] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[8] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[9] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[10] 陈卓坤, 张晓芳, 刘语馨, 虢婷, 孙志平, 周青, 陈永楠. 纳米多晶金属的晶界设计及强韧化研究进展[J]. 材料导报, 2024, 38(20): 23070227-9.
[11] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[12] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[13] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[14] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[15] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed