Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 24040002-7    https://doi.org/10.11896/cldb.24040002
  无机非金属及其复合材料 |
基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器
郭洪兵1, 刘曰利1,2,*
1 武汉理工大学材料科学与工程学院,硅酸盐建筑材料国家重点实验室,武汉 430070
2 武汉理工大学三亚科教创新园,海南 三亚 572024
Ultra-sensitive Resistive Humidity Sensor Based on Cs4PbBr6 Nanocrystals
GUO Hongbing1, LIU Yueli1,2,*
1 State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, Hainan, China
下载:  全 文 ( PDF ) ( 10996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用改进的配体辅助共沉淀法合成Cs4PbBr6纳米晶并组装基于Cs4PbBr6纳米晶的湿敏传感器,对其物相结构、微观形貌、能带结构、光学性质、表面状态进行表征,并对其湿敏性能及湿敏机理进行测试。研究结果表明,Cs4PbBr6纳米晶含有丰富的溴空位缺陷且有着良好的亲水性。Cs4PbBr6纳米晶湿敏传感器在11%~98%的湿度范围内具有2.32×105的超高响应值、5.14%的湿滞、优秀的线性度、14 s/10 s的快速响应恢复时间、优异的长期稳定性和气体选择性,能够胜任无接触式开关和呼吸检测的工作。Cs4PbBr6纳米晶优秀的湿敏性能归因于材料中的溴空位缺陷作为活性位点促进水分子的吸附和解离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭洪兵
刘曰利
关键词:  Cs4PbBr6纳米晶  湿敏传感器  溴空位缺陷  超高灵敏度    
Abstract: In this work, Cs4PbBr6 nanocrystals were synthesized via a modified ligand-assisted reprecipitation method and a humidity sensor based on Cs4PbBr6 nanocrystals was assembled. Phase structure, micromorphology, energy band structure, optical properties and surface state were characterized. Humidity sensing performance and humidity sensing mechanism were also tested. Research results show that Cs4PbBr6 nanocrystals contain abundant bromine vacancy defects and have good hydrophilicity. The Cs4PbBr6 nanocrystals humidity sensor has an ultra-high response value of 2.32×105, a hysteresis of 5.14%, excellent linearity, a short response/recovery time of 14 s/10 s, excellent long-term stability and gas selectivity in the humidity range of 11%—98%. It is capable for non-contact switch and breath detection. The excellent humidity sensing properties of Cs4PbBr6 nanocrystals are attributed to the bromine vacancy defects in the material, which serve as active sites to promote the adsorption and dissociation of water molecules.
Key words:  Cs4PbBr6 nanocrystal    humidity sensor    bromine vacancy defect    ultra-high sensitivity
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB34  
基金资助: 国家自然科学基金(12174298);三亚市科技创新专项项目(2022KJCX85)
通讯作者:  *刘曰利,博士,武汉理工大学硅酸盐建筑材料国家重点实验室研究员、博士研究生导师。目前主要从事气湿敏传感器、光催化、太阳能电池、空气取水、激光焊接等方面的研究。lylliuwhut@whut.edu.cn   
作者简介:  郭洪兵,现为武汉理工大学材料科学与工程学院硕士研究生,在刘曰利教授的指导下进行研究。目前主要研究领域为湿敏传感器。
引用本文:    
郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
GUO Hongbing, LIU Yueli. Ultra-sensitive Resistive Humidity Sensor Based on Cs4PbBr6 Nanocrystals. Materials Reports, 2025, 39(3): 24040002-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24040002  或          http://www.mater-rep.com/CN/Y2025/V39/I3/24040002
1 Ku C A, Chung C K. Sensors, 2023, 23, 2328.
2 Morchid A, El Alami R, Raezah A A, et al. Ain Shams Engineering Journal, 2024, 15, 102509.
3 Duan Z, Jiang Y, Tai H. Journal of Materials Chemistry C, 2021, 9(42), 14963.
4 Mei A, Chen W, Yang Z, et al. Angewandte Chemie International Edition, 2023, 62(19), e202301440.
5 Jiang K, Zhao H, Dai J, et al. ACS Applied Materials & Interfaces, 2016, 8(38), 25529.
6 Park K J, Gong M S. Sensors & Actuators B: Chemical, 2017, 246, 53.
7 Hendi A A. Journal of Nanoelectronics and Optoelectronics, 2015, 10(6), 734.
8 Tambwe K, Ross N, Baker P, et al. Materials, 2022, 15(12), 4146.
9 Weng Z, Qin J, Umar A A, et al. Advanced Functional Materials, 2019, 29(24), 1902234.
10 Pi C, Chen W, Zhou W, et al. Journal of Materials Chemistry C, 2021, 9(34), 11299.
11 Pi C, Yu X, Chen W, et al. Materials Advances, 2021, 2(3), 1043.
12 Yin J, Yang H, Song K, et al. The Journal of Physical Chemistry Letters, 2018, 9(18), 5490.
13 Mohammed O F. The Journal of Physical Chemistry Letters, 2019, 10(19), 5886.
14 Wei Y, Sun R, Li Y, et al. ChemNanoMat, 2020, 6(2), 258.
15 Yin J, Zhang Y, Bruno A, et al. ACS Energy Letters, 2017, 2(12), 2805.
16 Suresh S, Subramaniam M R, Hazra S, et al. ACS Omega, 2023, 8(5), 4616.
17 Shi Z, Yang Y, Sun X Y, et al. RSC Advances, 2021, 11(27), 16453.
18 Li X B, Huang W T, Zhang R R, et al. Rare Metals, 2022, 41(4), 1230.
19 Xia P, Lu Y, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(35), 39720.
20 Li C T, Chong M X, Zhang L X, et al. Sensors and Actuators B: Chemical, 2023, 379, 133240.
21 Xing Y, Zhang L X, Xu H, et al. Sensors and Actuators B: Chemical, 2021, 349, 130816.
22 Wang Y, Zhao S, Sheng J, et al. Materials Reports, 2022, 36(20),SSSSS 21060183(in Chinese).
王延杰, 赵世界, 盛俊杰, 等. 材料导报, 2022, 36(20), 21060183.
23 Anderson Jr J H, Parks G A. The Journal of Physical Chemistry, 1968, 72(10), 3662.
24 Jiang K, Zhao H, Fei T, et al. Sensors and Actuators B: Chemical, 2016, 222, 440.
25 Li P, Yang F. Materials Science and Engineering B, 2023, 298, 116902.
26 Agmon N. Chemical Physics Letters, 1995, 244(5-6), 456.
27 Ye W, Cao Q, Cheng X F, et al. Journal of Materials Chemistry A, 2020, 8(34), 17675.
28 Chong M X, Li C T, Zhang L X, et al. Sensors and Actuators A: Physical, 2023, 351, 114153.
29 Mi Y, Li P. Results in Physics, 2023, 50, 106560.
30 Yang C, Zhang H, Gu W, et al. Current Applied Physics, 2022, 43, 57.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
[3] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[4] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[5] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[6] 陈菊, 周涵. 基于近零介电常数材料的热辐射调控研究进展[J]. 材料导报, 2024, 38(22): 23100001-7.
[7] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[8] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[9] 闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
[10] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[11] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[12] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[13] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[14] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[15] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed