Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 110-115    https://doi.org/10.11896/j.issn.1005-023X.2018.01.013
  物理   材料综述 |材料 |
铼在镍基高温合金中作用机理的研究现状
丁青青,余倩,李吉学,张泽()
浙江大学材料科学与工程学院,电镜中心,杭州 310027
Research Progresses of Rhenium Effect in Nickel Based Superalloys
Qingqing DING,Qian YU,Jixue LI,Ze ZHANG()
Center of Electron Microscopy, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
下载:  全 文 ( PDF ) ( 981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

镍基单晶高温合金因其优异的高温力学性能、抗热腐蚀性能成为航空发动机中不可替代的涡轮叶片材料,少量稀有元素铼(Re)能大幅提高镍基高温合金的承温能力和力学性能,这一现象被称为“铼效应”。近几十年来,铼效应的强化机理备受关注,简要综述了国内外关于铼元素在高温合金中分布特征的研究进展及对应的铼强化机理,并展望了镍基高温合金中铼效应的研究趋势及挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁青青
余倩
李吉学
张泽
关键词:  铼效应  镍基高温合金  强化机理    
Abstract: 

Nickel based single crystalline superalloys are irreplaceable materials for blades of aero-engines due to their superior mechanical properties and corrosion resistance at high temperature. A small amount of rhenium (Re) can significantly improve both temperature capability and mechanical properties of nickel superalloys which is referred to as “Re effect”. This paper briefly reviews research progresses on the distribution of Re in nickel superalloys, and the corresponding strengthening mechanisms. A discussion on the future researches and challenges on the study of “rhenium effect” are prospected.

Key words:  rhenium effect    nickel based superalloys    strengthening mechanism
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG146.4+18  
基金资助: 国家自然科学基金(11227403)
作者简介:  丁青青:女,1992年生,博士研究生,主要从事含铼镍基单晶高温合金微观结构演变的研究
引用本文:    
丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys. Materials Reports, 2018, 32(1): 110-115.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.013  或          https://www.mater-rep.com/CN/Y2018/V32/I1/110
  
[1] Reed R C. The supealloys: Fundamentals and applications[M]. New York: Cambridge University Press, 2006: 147.
[2] Erickson G L. The development of CMSX-10, a third generation SX casting superalloy [C]∥Proceedings of the second Pacific Rim International Conference on Advanced Materials and Processing. Korea, 1995: 35.
[3] Smashey. Composite eutectic alloy and article:US,3904402[P]. 1975-09-09.
[4] W?llmer S, Mack T, Glatzel U., , Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy[J].Materials Science and Engineering:A 2001,319- 321:792.
[5] Wanderka N, Glatzel U . Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy[J]. Materials Science and Engineering: A, 1995,203(1-2):69.
[6] Blavette D, Cadel E, Deconihout B . The role of the atom probe in the study of nickel-based superalloys[J]. Materials Characterization, 2000,44(1-2):133.
[7] Blavette D, Cadel E, Pareige C , et al. Phase transformation and segregation to lattice defects in Ni-base superalloys[J]. Microscopy and Microanalysis, 2007,13(6):464.
[8] Blavette D, Caron P, Khan T . An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys[J]. Scripta Metallurgica, 1986,20(10):1395.
[9] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Materials Science and Engineering: A, 1998,250(1):88.
[10] Mottura A, Warnken N, Miller M K , et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys[J]. Acta Materialia, 2010,58(3):931.
[11] Rüsing J, Wanderka N, Czubayko U , et al. Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy[J]. Scripta Materialia, 2002,46(3):235.
[12] Ge B H, Luo Y S, Li J R , et al. Distribution of rhenium in a single crystal nickel-based superalloy[J]. Scripta Materialia, 2010,63(10):969.
[13] Link T, Epishin A, Paulisch M , et al. Topography of semicoherent γ/γ'-interfaces in superalloys: Investigation of the formation mechanism[J]. Materials Science and Engineering: A, 2011,528(19-20):6225.
[14] Parsa A B, Wollgramm P, Buck H , et al. Ledges and grooves at γ/γ' interfaces of single crystal superalloys[J]. Acta Materialia, 2015,90:105.
[15] Mottura A, Wu R T, Finnis M W , et al. A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopy[J]. Acta Materialia, 2008,56(11):2669.
[16] Mottura A, Finnis M W, Reed R C . On the possibility of rhenium clustering in nickel-based superalloys[J]. Acta Materialia, 2012,60(6-7):2866.
[17] Tian S, Su Y, Qian B , et al. Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re[J]. Materials & Design, 2012,37(10):236.
[18] Yuan Y, Kawagishi K, Koizumi Y , et al. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800 ℃[J]. Materials Science and Engineering: A, 2014,608:95.
[19] Blavette D, Khan T. An atom-probe study of some fine-scale microstructure features in Ni-based single crystal Superalloys [C]∥Pittsburgh, 1988: 304.
[20] Pollock T M, Argon A S . Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica et Materialia, 1992,40(1):1.
[21] Zhu Z, Basoalto H, Warnken N , et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys[J]. Acta Materialia, 2012,60(12):4888.
[22] Janotti A Kr c ˙ mar M,Fu C L, , et al. Solute diffusion in metals: Larger atoms can move faster [J]. Physical Review Letters, 2004,92(8):085901.
[23] Mottura A, Reed R C . What is the role of rhenium in single crystal superalloys?[J]. MATEC Web of Conferences, 2014,14:01001.
[24] Zhang J X, Murakumo T, Harada H, et al. Creep deformation mechanisms in some modern single-crystal superalloys [C]∥Superalloys 2004. Pittsburgh, 2004.
[25] Durst K, G?ken M, Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys[J].Materials Science and Engineering:A , 2004, 387- 389:312.
[26] Gan B, Tin S . Assessment of the effectiveness of transition metal solutes in hardening of Ni solid solutions[J]. Materials Science and Engineering: A, 2010,527(26):6809.
[27] Sun F, Zhang J, Mao S , et al. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration[J]. Journal of Alloys and Compounds, 2015,618:750.
[28] Huang M, Cheng Z, Xiong J , et al. Coupling between Re segregation and γ/γ' interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy[J]. Acta Materialia, 2014,76(37):294.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 肖璐, 刘婷婷, 陈先华, 郑开宏, 潘复生. 金属颗粒增强镁基复合材料制备技术及性能的研究进展[J]. 材料导报, 2024, 38(17): 23020261-14.
[3] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[4] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[5] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[6] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[9] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[10] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[11] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[12] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[13] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[8] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[9] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
[10] Hong DONG,Xiaojun SUN,Xin ZHANG,Doudou YANG,Xueliang WANG,Fengming ZHANG. Synthesis and Drug Delivery Properties of Nano Metal-organic Framework ZIF-90[J]. Materials Reports, 2018, 32(2): 189 -192 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed