Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23110091-5    https://doi.org/10.11896/cldb.23110091
  先进有色金属材料加工及性能调控 |
K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律
高磊1, 屈星海1, 吴一栋1, 陈晶阳2, 肖程波2,*, 惠希东1,*
1 北京科技大学新金属材料国家重点实验室,北京 100083
2 中国航发北京航空材料研究院先进高温结构材料重点实验室,北京 100095
Evolution of Carbides in K439B Nickel-based Cast Superalloy During Long-term Aging at 800 ℃
GAO Lei1, QU Xinghai1, WU Yidong1, CHEN Jingyang2, XIAO Chengbo2,*, HUI Xidong1,*
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 37036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 K439B镍基合金是一种承温能力达800 ℃的新型铸造高温材料,在发动机机匣类复杂结构件有重要应用前景。作为该合金中的主要晶界强化相,碳化物在合金长期时效过程中的演化规律尚不清楚。以K439B合金为对象,在800 ℃下对该合金进行了6 000~10 000 h的等温时效实验,研究了其长期时效过程中碳化物的演变规律和转变机理。结果表明,K439B合金的组织稳定性优异。经过长期时效后,晶界和枝晶间组织中仍保留大部分标准热处理态时的MC型碳化物,仅有部分MC型碳化物分解为M23C6型碳化物和γ′相,未出现η相和σ相等TCP有害相。晶界M23C6型碳化物表现出两种不同的粗化行为,一是M23C6型碳化物逐渐宽化,在长期时效后宽度均一,碳化物排列整齐;二是在某些晶界部位,粗化后的M23C6型碳化物呈现不规则的形状,甚至向晶粒内部延伸。晶界M23C6型碳化物并未出现沿整个晶界的完全相连情况,其主要是γ′相颗粒将两个相邻的M23C6型碳化物分隔所致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高磊
屈星海
吴一栋
陈晶阳
肖程波
惠希东
关键词:  K439B镍基高温合金  长期时效  组织稳定性  碳化物    
Abstract: K439B nickel-based superalloy is a new type of cast high-temperature material with a temperature bearing capacity of up to 800 ℃, which has important application prospects in large and complex structural components such as engine casings. As the main grain boundary strengthening phase in this alloy, the evolution of carbides during the long-term aging process is still unclear. This article takes K439B alloy as the object and conducts isothermal aging experiments at 800 ℃ for 6 000—10 000 h to study the evolution and transformation mechanism of carbides during long-term aging process. The results indicate that K439B alloy has excellent structural stability. After long-term aging, most of the MC type carbides in the standard heat treated state were still retained in the grain boundaries and interdendritic structures, and only a portion of the MC type carbides decomposed into M23C6-type carbides and γ' phase, no harmful phases (e.g. σ and η) were formed after long-term aging for 10 000 h. The M23C6-type carbides at grain boundaries exhibited two coarsening behaviors. On the one hand, the M23C6-type carbides gradually coarsened and had a uniform width after long-term aging;on the other hand, the coarsened M23C6-type carbides at certain grain boundaries exhibited irregular shapes and even extended towards the interior of the grains. γ′ phase separate two adjacent M23C6-type carbides, resulting in no complete connection of M23C6-type carbides along the entire grain boundaries.
Key words:  K439B nickel-based superalloy    long-term aging    microstructure stability    carbides
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG132.3  
基金资助: 国家科技重大专项项目(J2019-VI-0004-0117);先进高温结构材料重点实验室基金项目(6142903220101);国家重点研发计划项目(2022YFB3706804)
通讯作者:  * 惠希东,北京科技大学新金属材料国家重点实验室教授、博士研究生导师。1997年山东工业大学铸造专业博士毕业,1999年至今在北京科技大学任教。目前从事高温合金、非晶合金和计算材料学等方面的研究工作。在Nature和Acta Mater.等国内外知名学术期刊发表论文200余篇,获发明专利授权30余项。xdhui@ustb.edu.cn;cbxiao0288@sina.com   
作者简介:  高磊,2019年6月于辽宁科技大学获得工学学士学位。现为北京科技大学新金属材料国家重点实验室博士研究生,在惠希东教授的指导下进行研究。目前主要从事航空发动机燃烧室机匣用新型高强可焊等轴晶铸造镍基高温合金的成分调控与性能研究。
引用本文:    
高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
GAO Lei, QU Xinghai, WU Yidong, CHEN Jingyang, XIAO Chengbo, HUI Xidong. Evolution of Carbides in K439B Nickel-based Cast Superalloy During Long-term Aging at 800 ℃. Materials Reports, 2024, 38(15): 23110091-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110091  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23110091
1 Liu L. Foundry, 2012, 61(11), 13 (in Chinese).
刘林. 铸造, 2012, 61(11), 13.
2 Kanyo J E, Schafföner S, Uwanyuze R S, et al. Journal of the European Ceramic Society, 2020, 40(15), 4955.
3 Marini D, Cunningham D, Corney J. Journal of Engineering Manufacture, 2017, 232(4), 650.
4 Guo G Y. Foundry Technology, 2015, 36(10), 3 (in Chinese).
郭国谊. 铸造技术, 2015, 36(10), 3.
5 Hashmi S, Batalha G F, Van Tyne C J, et al. Comprehensive materials processing, Oxford: Elsevier, 2014.
6 Chen J Y, Ren X D, Zhang M J, et al. Heat Treatment of Metals, 2023, 48(1), 100 (in Chinese).
陈晶阳, 任晓冬, 张明军, 等. 金属热处理, 2023, 48(1), 100.
7 Zhang L L, Chen J Y, Tang X, et al. Acta Metallurgica Sinica, 2023, 59(9), 1253 (in Chinese).
张雷雷, 陈晶阳, 汤鑫, 等. 金属学报, 2023, 59(9), 1253.
8 Fu Y S, Shen Y, Jiang X Z, et al. Aeroengine, 2011, 37(6), 4 (in Chinese).
傅依顺, 沈毅, 姜曦灼, 等. 航空发动机, 2011, 37(6), 4.
9 Panigrahi S K, Sarangi N. Aero engine combustor casing:experimental design and fatigue studies, Boca Raton: CRC Press, 2017.
10 Grum J. International Journal of Microstructure and Materials Properties, 2012, 7(5), 464.
11 Collins H E. Superalloys 1968, TMS, Warrendale, PA, 1968, pp.171.
12 Sun W, Qin X, Guo J, et al. Materials & Design, 2015, 69, 81.
13 Xinag X, Yao Z, Dong J, et al. Journal of Alloys and Compounds, 2019, 787, 216.
14 Qin X Z, Guo J T, Yuan C, et al. Materials Science and Engineering: A, 2008, 485(1), 74.
15 Detrois M, Jablonski P D, Hawk J A. Materials Science and Engineering: A, 2021, 799, 140337.
16 Jahangiri M R, Abedini M. Materials & Design, 2014, 64, 588.
17 Jahangiri M R, Arabi H, Boutorabi S M A. Transactions of Nonferrous Metals Society of China, 2014, 24(6), 1717.
18 Lvov G, Levit V I, Kaufman M J. Metallurgical and Materials Transactions A, 2004, 35(6), 1669.
19 Qin X Z, Guo J T, Yuan C, et al. Metallurgical & Materials Transactions A, 2007, 38(12), 3014.
[1] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[2] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[3] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[4] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[5] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[6] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[7] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[8] 杨道宽, 仇念双, 左小伟. 铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响[J]. 材料导报, 2023, 37(17): 22030246-8.
[9] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[10] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[11] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[12] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[13] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[14] 刘光银, 黄健康, 于晓全, 张建晓, 樊丁. 不同预边堆焊过渡层对12Cr2Mo1R/S30408接头组织与性能的影响[J]. 材料导报, 2022, 36(12): 21050178-5.
[15] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed