Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030003-6    https://doi.org/10.11896/cldb.22030003
  金属与金属基复合材料 |
球磨转速对含钆ODS钢中M23C6析出的影响研究
杨新异1,2, 黄群英1,2,*
1 中国科学院合肥物质科学研究院,核能安全技术研究所,合肥 230031
2 中国科学技术大学研究生院科学岛分院,合肥 230026
Effect of Ball Milling Speed on Precipitation of M23C6 in Gadolinium-containing ODS Steel
YANG Xinyi1,2, HUANG Qunying1,2,*
1 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 30368KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以“结构/屏蔽一体化”为研发目标的含钆ODS合金具有较优的中子屏蔽性能与高温力学性能,可作为小型模块化铅冷快堆中子屏蔽材料的研发方向之一。在机械合金化-放电等离子体烧结工艺制备含钆ODS-316L钢的研究中发现,球磨转速影响材料的析出相种类,如在220 r/min低球磨转速下,ODS-316L钢中仅存在纳米尺寸的Gd-Si-O析出相,而在300 r/min高球磨转速下,除纳米尺寸的Gd-Si-O析出相外,材料内还分布着大量百纳米尺寸的片层堆叠状M23C6型碳化物,且M23C6内同样存在纳米含钆氧化物颗粒。高球磨转速使球磨粉内元素的偏析与内应力的累积促进了M23C6的形核,随后的粉末烧结温度则为M23C6的生长提供了驱动力。此研究可为粉末冶金含钆ODS-316L钢的微观组织调控奠定一定的实验与理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨新异
黄群英
关键词:  中子屏蔽合金  含钆氧化物弥散强化(ODS)钢  粉末冶金  球磨转速  M23C6型碳化物    
Abstract: The gadolinium-containing oxide dispersion strengthening (ODS) alloy, which will promisingly be with good neutron shielding performance and elevated-temperature mechanical properties, can be used as one of the shielding materials for the small modular lead-cooled fast reactor. The gadolinium-containing ODS-316L steel was prepared through the powder metallurgy process of mechanical alloying-spark plasma sintering. It was found that the speed of ball-milling affected the types of precipitated phases in the steel. Nano-sized Gd-Si-O precipitates distributed in the ODS-316L steel at a low ball-milling speed of 220 r/min, while hundred-nanometers sized M23C6 clusters and Gd-Si-O precipitates both distributed in the steel fabricated with high ball-milling speed of 300 r/min. A certain number of nanometer gadolinium-containing oxides distributed in M23C6 clusters. The segregation of elements and the accumulation of internal stress caused by the high ball-milling speed in as-milled powders were conducive to the nucleation of M23C6 precipitates, and the temperature of the powder sintering process provided a driving force for the growth of M23C6 precipitates. This study can provide certain experimental experience and theoretical foundation for the microstructure control of powder metallurgy gadolinium-containing ODS-316L steel.
Key words:  neutron shielding alloy    gadolinium-containing oxide dispersion strengthening steel    powder metallurgy    ball mill speed    M23C6 precipitates
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TL344  
  TF124  
基金资助: 国家重点研发计划项目(2020YFB1901900);中国科学院国际合作局国际伙伴计划(116134KYSB20200056);安徽省“115”产业创新团队项目
通讯作者:  *黄群英,中国科学院合肥物质科学研究院二级研究员,博士研究生导师,研究所副总工,享受国务院政府津贴专家。主持先进反应堆结构材料中国低活化马氏体CLAM钢研发、新型屏蔽材料研发、先进堆液态重金属回路研发及相关实验研究等工作。公开发表学术论文220余篇,多篇论文入选“ESI十年全球TOP 1%的高被引论文”“中国百篇最具影响国内学术论文”“第五届中国科协期刊优秀学术论文奖”等,获授权国家发明专利90余项、国际发明专利2项、国家及团体标准5项。qunying.huang@inest.cas.cn   
作者简介:  杨新异,2022年4月于中国科学技术大学获得博士学位。从事氧化物弥散强化钢与中子屏蔽合金研究。
引用本文:    
杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
YANG Xinyi, HUANG Qunying. Effect of Ball Milling Speed on Precipitation of M23C6 in Gadolinium-containing ODS Steel. Materials Reports, 2023, 37(17): 22030003-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030003  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030003
1 Pioro I. Handbook of generation IV nuclear reactors, Woodhead Publis-hing, UK, 2016, pp. 119.
2 Abram T, Ion S. Energy Policy, 2008, 36(12), 4323.
3 Nguyen T D C, Choe J, Ebiwonjumi B, et al. International Journal of Energy Research, 2019, 43(1), 254.
4 Subki H. Advances in small modular reactor technology developments, International Atomic Energy Agency, Austria, 2020, pp. 225.
5 Smith C F, Halsey W G, Brown N W, et al. Journal of Nuclear Materials, 2008, 376(3), 255.
6 Fu X, Ji Z, Lin W, et al. Science and Technology of Nuclear Installations, 2021, 2021, e5541047.
7 Wang Y R, Zhao Y, Jiang M Z, et al. Journal of Netshape Forming Engineering, 2019, 11(3), 166 (in Chinese).
王玉容, 赵勇, 蒋明忠, 等. 精密成形工程, 2019, 11(3), 166.
8 Sun W Q, Hu G, Yu X H, et al. Materials, 2021, 14(22), 7004.
9 He L. Cai Y J, Li Q. Materials Reports, 2018, 32(7), 1107 (in Chinese).
何林, 蔡永军, 李强. 材料导报, 2018, 32(7), 1107.
10 Yuan L L. Research on preparative technique of metal composite contained boron for nuclear shielding. Ph. D. Thesis. University of Science and Technology Beijing, China, 2016 (in Chinese).
元琳琳. 核屏蔽用高硼金属复合材料的制备技术基础研究. 博士学位论文. 北京科技大学, 2016.
11 Trkov A, Griffin P J, Simakov S P, et al. Nuclear Data Sheets, 2020, 163, 1.
12 Wachs G W. In:Idaho National Lab. Idaho Falls, 2007, INL/CON-07-12838.
13 McConnell P, Robino C, Mizia R, et al. In:ASME Pressure Vessels and Piping Conference. Canada, 2006, pp. 453.
14 Robino C, Mizia R, Dupont J, et al. Packaging, Transport, Storage and Security of Radioactive Material, 2005, 16, 49.
15 Kang J Y, Jang J H, Kim S, et al. Journal of Nuclear Materials, 2020, 542, 152462.
16 Baik Y, Choi Y, Moon B M. Nanoscience & Nanotechnology Letters, 2017, 9(1), 74.
17 Robino C V, Michael J R, Dupont J N, et al. Journal of Materials Engineering and Performance, 2003, 12(2), 206.
18 Wan S, Wang W, Chen H, et al. Vacuum, 2020, 176, 109304.
19 Yang X, Song L, Chang B, et al. Nuclear Materials and Energy, 2020, 23, 100739.
20 Jones R, Randle V, Owen G. Materials Science and Engineering A, 2008, 496(1-2), 256.
21 Xiao B, Feng J, Zhou C T, et al. Chemical Physics Letters, 2008, 459(1-6), 129.
22 Lv Z Q, Dong F, Zhou Z A, et al. Journal of Alloys and Compounds, 2014, 607, 207.
23 Yi Y, Xu W, Xia F, et al. Advanced Engineering Materials, 2017, 121, 74.
24 Ding X P, Liu X, He Y L, et al. Chinese Journal of Materials Research, 2009, 23(3), 269 (in Chinese).
丁秀平, 刘雄, 何燕霖, 等. 材料研究学报, 2009, 23(3), 269.
25 Hidalgo J, Vittorietti M, Farahani H, et al. Acta Materialia, 2020, 200, 74.
26 Gräning T, Rieth M, Hoffmann J, et al. Journal of Nuclear Materials, 2019, 516, 335.
27 Gräning T, Klimenkov M, Rieth M, et al. Journal of Nuclear Materials, 2019, 523, 111.
28 Suryanarayana C. Research, 2019, 2019, 4219812.
29 Waseda O, Veiga R G, Morthomas J, et al. Scripta Materialia, 2017, 129, 16.
30 Li H, Jing H, Xu L, et al. International Journal of Plasticity, 2020, 127, 102634.
31 Todd J A, Ren J. Materials Science and Engineering A, 1989, 117, 235.
32 Keller C, Tabalaiev K, Marnier G, et al. Materials Science and Enginee-ring A, 2016, 665, 125.
33 Oleszak D, Grabias A, Pekała M, et al. Journal of Alloys and Compounds, 2007, 434, 340.
34 Xu Y L, Zhou Z J, Li M, et al. Materials Science & Technology, 2010, 18(2), 187 (in Chinese).
许迎利, 周张健, 李明, 等. 材料科学与工艺, 2010, 18(2), 187.
[1] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[2] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[3] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[6] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[7] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[8] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[9] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[10] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[11] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[12] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[13] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[14] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[15] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed