Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21050088-5    https://doi.org/10.11896/cldb.21050088
  金属与金属基复合材料 |
粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为
颉芳霞1,2,*, 杨豪1, 黄家兵1, 何雪明1,2, 俞经虎1,2
1 江南大学机械工程学院,江苏 无锡 214122
2 江苏省食品先进制造技术与装备重点实验室,江苏 无锡 214122
Tribological Behavior of Ti-xNb-5Sn Orthopedic Alloys Prepared by Powder Metallurgy
XIE Fangxia1,2,*, YANG Hao1, HUANG Jiabing1, HE Xueming1,2, YU Jinghu1,2
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, Jiangsu, China
下载:  全 文 ( PDF ) ( 5418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用粉末冶金方法制备了Ti-xNb-5Sn(x=13%、16%、18%、20 %,质量分数)合金,研究了Nb含量对其微观组织和摩擦学行为的影响规律。结果表明:粉末冶金法制备的Ti-xNb-5Sn合金是典型的α+β型钛合金,α相随着Nb含量的增加逐渐减少,Nb含量为20%时β相的衍射峰成为主峰。合金的硬度和弹性模量随着Nb含量的增加而下降,分别在271HV~319HV和68~73 GPa之间变化。合金的摩擦系数随着Nb含量增多而提高,Ti-13Nb-5Sn合金的摩擦系数最小(0.41),Ti-20Nb-5Sn合金的摩擦系数最大(0.48)。合金的磨损率为1.36×10-3~1.58×10-3 mm3/(m·N)。随着Nb含量增多,合金的磨痕深度增加,分层现象逐渐加剧,并且有微裂纹出现。Ti-13Nb-5Sn合金的磨损机制为磨粒磨损,Ti-16Nb-5Sn合金和Ti-18Nb-5Sn合金以磨粒磨损为主、表面疲劳磨损为辅,而Ti-20Nb-5Sn合金以表面疲劳磨损为主。本研究证实Nb是一种β稳定剂,加入适量Nb可以降低合金的弹性模量,同时使其具有良好的耐磨性。粉末冶金制备的Ti-xNb-5Sn合金是一种具有发展潜力的骨科修复材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颉芳霞
杨豪
黄家兵
何雪明
俞经虎
关键词:  Ti-Nb-Sn合金  粉末冶金  微观组织  摩擦学行为    
Abstract: In this work, Ti-xNb-5Sn (x=13%, 16%, 18%, 20%,mass fraction) alloys were prepared by powder metallurgy, and the effects of Nb content on the microstructure and tribological behavior of the alloys were studied. The results showed that the Ti-xNb-5Sn alloys were a typical α+β two-phase microstructure. The α phase decreased gradually with the increasing Nb content. When Nb content reached 20wt%, the β phase became the main peak. The hardness and elastic modulus decreased with the increase of Nb content in the ranges of 271HV—319HV and 68—73 GPa, respectively. The minimum friction coefficient of Ti-13Nb-5Sn was 0.41, and Ti-20Nb-5Sn increased to 0.48. The wear rate changed in the range of 1.36×10-3—1.58×10-3 mm3/(m·N). With the increase of Nb content, the grinding cracks deepened, delamination phenomenon intensified gradually, and microcracks generated. The Ti-13Nb-5Sn was dominated by abrasive wear. The wear mechanism of Ti-16Nb-5Sn and Ti-18Nb-5Sn changed to abrasive wear together with surface fatigue wear, while the Ti-20Nb-5Sn was surface fatigue wear predominately. This study confirms that Nb is a β-stabilizer. An appropriate amount of Nb can reduce the elastic modulus, and achieve good wear resistance. Ti-xNb-5Sn alloy prepared by molding-sintering is an attractive candidate for orthopedic materials.
Key words:  Ti-Nb-Sn alloy    powder metallurgy    microstructure    tribological behavior
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TF125  
基金资助: 国家自然科学基金(51501073;51975251);江苏省自然科学基金(BK20140162)
通讯作者:  * xiefangxia@aliyun.com   
作者简介:  颉芳霞,江南大学机械工程学院副教授、硕士研究生导师。2013年6月在北京科技大学获得材料科学与工程专业博士学位。主要研究方向为新型生物钛基材料、金属增材制造技术/3D打印技术以及先进粉末冶金成形技术。先后主持国家自然科学基金、江苏省自然科学基金和中央专项基础科研项目,并参与多项国家级、省部级及企业项目。在国内外权威学术期刊上发表学术论文20余篇,授权国家发明专利3项。
引用本文:    
颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
XIE Fangxia, YANG Hao, HUANG Jiabing, HE Xueming, YU Jinghu. Tribological Behavior of Ti-xNb-5Sn Orthopedic Alloys Prepared by Powder Metallurgy. Materials Reports, 2022, 36(21): 21050088-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050088  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21050088
1 Geetha M, Singh A K, Asokamani R, et al. Progress in Materials Science, 2009, 54(3), 397.
2 Attar H, Ehteman S, Kent D, et al. International Journal of Machine Tools and Manufacture, 2018, 133, 85.
3 Okulov A, Volegov A, Weissmüller J, et al. Scripta Materialia, 2018, 146, 290.
4 Okulov I, Pauly S, Kühn U, et al. Materials Science and Engineering C, 2013, 33(8), 4795.
5 Niinomi M. Science and Technology of Advanced Materials, 2003, 4(5), 445.
6 Niinomi M, Nakai M, Hieda J, et al. Acta Biomaterialia, 2012, 8(11), 3888.
7 Li P Y, Ma X D, Tong T, et al. Journal of Alloys and Compounds, 2020, 815, 152412.
8 Rack H J, Qazi J I. Materials Science and Engineering C, 2006, 26(8), 1269.
9 Tao H F, Chen L J, Wang S J, et al. China Steel Focus, 2019(19), 27 (in Chinese).
陶会发, 陈令杰, 王树军, 等. 冶金管理, 2019(19), 27.
10 Guo S B, Chu A M, Wu H J, et al. Journal of Alloys and Compounds, 2014, 597, 211.
11 Xu W, Lu X, Tian J J, et al. Journal of Materials Science and Technology, 2020, 41, 191.
12 Wang Y F,He L,Guo W. Titanium Industry Progress, 2015, 32(1), 1 (in Chinese).
王运锋, 何蕾, 郭薇.钛工业进展, 2015, 32(1), 1.
13 Zhang W Y. Marine Equipment/Materials & Marketing, 2019(12), 11 (in Chinese).
张文毓.船舶物资与市场, 2019(12), 11.
14 Kaur M, Singh K. Materials Science and Engineering C, 2019, 102, 844.
15 Li P, Ma X, Tong T, et al. Journal of Alloys and Compounds, 2020, 815, 152412.
16 Banerjee R, Nag S, Stechschulte J, et al. Biomaterials, 2004, 25(17), 3413.
17 Xu W, Lu X, Hayat M D, et al. Journal of Materials Research and Technology, 2019, 8(5), 3696.
18 Zhang Y T, Liu H Y, Wang C, et al. Hot Working Technology, 2017, 46(4), 21 (in Chinese).
张永涛, 刘汉源, 王昌, 等. 热加工工艺, 2017, 46(4), 21.
19 Xu W, Tian J J, Liu Z, et al. Materials Science and Engineering C, 2019, 105, 110015.
20 Hu H J, Xu G, Wang L, et al. Materials and Design, 2015, 84, 95.
21 Xu J, Wang G D, Lu X L, et al. Ceramics International, 2014, 40(6), 8621.
22 Hynowska A, Pellicer E, Fornell J, et al. Materials Science and Enginee-ring C, 2012, 32(8), 2418.
23 Abdi S, Khoshkoo M, Shuleshova O, et al. Intermetallics, 2014, 46, 156.
24 La P Q, Ma J Q, Zhu Y T, et al. Acta Materialia, 2005, 53(19), 5167.
25 Li X X, Zhou Y, Ji X L, et al. Tribology International, 2015, 91, 228.
26 Farokhzadeh K, Edrisy A. Tribology International, 2016, 94. 98.
27 Wang Q, Zhang P, Wei D, et al. Materials and Design, 2013, 52, 265.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[9] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[12] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[13] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[14] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[15] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed