Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21020063-5    https://doi.org/10.11896/cldb.21020063
  金属与金属基复合材料 |
316奥氏体不锈钢高频感应焊接技术及缺陷形成机理
王超1, 陈琪1, 肖述广1, 董仕节1, 谢志雄1, 罗平1, 解剑英2
1 湖北工业大学材料与化学工程学院,武汉 430068
2 武汉市博钛新材料科技有限公司,武汉 430058
High Frequency Induction Welding Technology and Defect Formation Mechanism of 316 Austenitic Stainless Steel
WANG Chao1, CHEN Qi1, XIAO Shuguang1, DONG Shijie1, XIE Zhixiong1, LUO Ping1, XIE Jianying2
1 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Wuhan Botal New Materials Technology Co.,Ltd., Wuhan 430058, China
下载:  全 文 ( PDF ) ( 4997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高频感应焊接技术对壁厚0.3 mm的316奥氏体不锈钢进行焊接试验,研究焊接工艺对焊缝宏观形貌、接头组织及力学性能的影响,并讨论了焊接缺陷形成机理。结果表明,开口角较小时,毛刺以椭球状驼峰缺陷成形,随着开口角的增加驼峰缺陷呈减少趋势;焊接点有水渍聚集时,易出现焊接飞溅。当热输入为16.5 kJ/m、焊接速度为80 m/min、开口角为6°、钢带边缘保持干燥和洁净时,可获得无缺陷连续毛刺形貌。焊缝组织为奥氏体+δ-铁素体,焊缝区平均硬度值达到289HV,接头平均抗拉强度约为920 MPa,高于母材抗拉强度(760 MPa)。焊缝强度高的原因是挤压辊的压力将脆性杂质从焊缝中挤出,提高了晶粒间的结合能力,且焊缝成形好,焊缝区晶粒组织细小,奥氏体晶界析出大量阻碍位错运动的δ-铁素体。本工作提出了一种熔融金属流动模型分析其驼峰缺陷形成机理,即:焊接时开口角小,熔融金属内部的平衡状态短时间内随着熔融金属的聚集长大而被破坏,驼峰形成;开口角增大到合适角度时,焊接状态保持稳定,最终连续毛刺形成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超
陈琪
肖述广
董仕节
谢志雄
罗平
解剑英
关键词:  奥氏体不锈钢  高频感应焊接  微观组织  焊接缺陷  形成机理    
Abstract: The high-frequency induction welding technology was used to conduct the welding test on 316 austenitic stainless steel with a wall thickness of 0.3 mm. The influence of welding process on the macro morphology of weld, microstructure and mechanical properties of joint was studied, and the formation mechanism of welding defects was discussed. The results show that when the opening angle is small, the burr is formed by ellipsoid hump defect, and the hump defect decreases with the increase of opening angle. When the welding points are gathered with water stains, welding spatter is prone to occur. When the heat input is 16.5 kJ/m and the welding speed is 80 m/min, the opening angle is 6°, and with the edge of the steel strip dry and clean, the defect-free continuous burr morphology can be obtained. The microstructure of the weld is austenite and δ-ferrite. The average hardness of the weld zone reaches 289HV, and the average tensile strength of the joint is about 920 MPa, which is higher than that of the base metal (760 MPa). The high strength of the weld can be attributed to the extrusion of brittle impurities from the weld by the pressure of the extrusion roller, which improves the bonding ability between grains, and the good formation of the weld, with a result that the grain structure in the weld area is fine, and a large number of δ-ferrites precipitate at the austenite grain boundary hindering the dislocation movement. A flow model of molten metal is proposed to analyze the formation mechanism of hump defects, that is, the opening angle is small during welding, and the equilibrium state inside the molten metal is destroyed with the aggregation of molten metal in a short time to form humps. When the opening angle increases to a suitable one, the welding remains stable and eventually forms a continuous burr.
Key words:  stainless austenitic steel    high frequency induction welding    microstructure    welding defect    formation mechanism
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(51771071)
通讯作者:  xzx@hbut.edu.cn   
作者简介:  王超,2018年6月毕业于沈阳大学,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在董仕节教授、谢志雄老师、罗平老师的指导下进行研究。目前的主要研究领域为薄壁奥氏体不锈钢的高频感应焊接技术。
谢志雄,工学博士,硕士研究生导师,湖北工业大学材料成型及控制工程系副主任。2012年6月于上海交通大学材料加工工程专业获工学博士学位。迄今发表论文20余篇,其中SCI/EI收录论文15余篇。主持和参与湖北省自然科学基金项目、国家自然科学基金项目,主要从事高强高导铜合金的制备、组织性能和强化机理,产氢铝合金的制备产氢机理方面研究和超薄壁钛管、不锈钢管高频焊接研究。
引用本文:    
王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
WANG Chao, CHEN Qi, XIAO Shuguang, DONG Shijie, XIE Zhixiong, LUO Ping, XIE Jianying. High Frequency Induction Welding Technology and Defect Formation Mechanism of 316 Austenitic Stainless Steel. Materials Reports, 2022, 36(19): 21020063-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020063  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21020063
1 Wang Z R, Zuo S C, Zhang S B, et al. Transactions of the China Welding Institution, 2020, 41(2), 18 (in Chinese).
王子然, 左善超, 张善保, 等. 焊接学报, 2020, 41(2), 18.
2 Rosso M, Grande M A. Journal of Achievements in Materials & Manufacturing Engineering, 2007, 21(2), 97.
3 Li H, Liu D, Ma Q, et al. Science and Technology of Welding and Joi-ning, 2018, 24(1), 1.
4 Cakmak E, Vogel S C, Choo H. Materials Science and Engineering: A, 2014, 589, 235.
5 Gardner L. Thin-Walled Structures, 2019, 141, 208.
6 Saha S, Mukherjee M, Pal T K. Journal of Materials Engineering & Performance, 2015, 24(3), 1125.
7 Hidiroglu M, Serce O, Karabulut H, et al. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 2018, 4, 263.
8 Xin L J, Su H, Zhou Q, et al. Hot Working Technology, 2018, 47(3), 57 (in Chinese).
辛立军, 苏海, 周岐, 等. 热加工工艺, 2018, 47(3), 57.
9 Liu J W, Zeng P W, Rao Z H, et al. Journal of Central South University, 2019, 26(8), 2088.
10 Kim D, Kim T, Park Y, et al. Welding Journal-New York, 2007, 86(3), 71.
11 Zhang W, Zhao G, Fu Q. Materials Science and Engineering: A, 2018, 736, 276.
12 Udhayakumar T, Mani E. Journal of Material Science & Engineering, 2017, 6(2), 1.
13 Ghaffarpour M, Akbari D, Moslemi Naeeni H, et al. Welding in the World, 2019, 63(6), 1561.
14 Kavousi Sisi A, Mirsalehi S E. Journal of Materials Engineering and Performance, 2015, 24(4), 1626.
15 Zhao W D. Hebei Metallurgy, 2007(4), 85 (in Chinese).
赵卫东. 河北冶金, 2007(4), 85.
16 Liu A M, Liu F T. Welded Pipe and Tube, 2015, 38(11), 29 (in Chinese).
刘爱民, 刘法涛. 焊管, 2015, 38(11), 29.
17 Bi Z Y, Yan P L, Yu H, et al. Welded Pipe and Tube, 2016, 39(8), 1 (in Chinese).
毕宗岳, 严培林, 余晗, 等. 焊管, 2016, 39(8), 1.
18 Wang C, Xie Z X, Luo P, et al. Materials Reports B: Research Papers, 2021, 35(22), 22132 (in Chinese).
王超, 谢志雄, 罗平, 等. 材料导报:研究篇, 2021, 35(22), 22132.
19 Zhang W P, Zhang G L, Zhang Y G, et al. Welded Pipe and Tube, 2019, 42(9), 1 (in Chinese).
张万鹏, 张高兰, 张亚刚, 等. 焊管, 2019, 42(9), 1.
20 Li J Q. Welded Pipe and Tube, 1996 (1), 3 (in Chinese).
李锦旗. 焊管, 1996 (1), 3.
21 Guo Z, Zhang L, Zhou W, et al. Journal of Mechanical Engineering, 2020, 56(14), 73 (in Chinese).
郭震, 张理, 周伟, 等. 机械工程学报, 2020, 56(14), 73.
22 Meng X, Qin G, Zou Z. International Journal of Heat and Mass Transfer, 2018, 117, 508.
23 Huang Y Y. Steel Pipe, 2000(6), 31 (in Chinese).
黄友阳. 钢管, 2000(6), 31.
24 John C L, Damian J K. Welding metallurgy and weldability of stainless steels, John Wiley & Sons, USA, 2005.
25 Kang C, Shi C, Liu Z, et al. Journal of Manufacturing Processes, 2020, 59, 772.
26 Folkhard E. Welding metallurgy of stainless steels, Springer Science & Business Media, GER, 2012.
27 Zhang Z S, Ning D J. Welding Technology, 1990 (5), 11 (in Chinese).
张则甡, 宁道俊. 焊接技术, 1990 (5), 11.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[9] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[10] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[11] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[12] 肖寒, 陈昊, 熊迟, 陈磊, 张雄超, 周瑀杭, 崔鋆昕. 重熔温度对半固态挤压铜合金轴套组织性能的影响[J]. 材料导报, 2022, 36(17): 21050057-5.
[13] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[14] 赵堃, 孛海娃, 艾桃桃, 廖仲尼, 丁镠, 冯小明. 非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能[J]. 材料导报, 2022, 36(14): 22040007-7.
[15] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed