Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21020038-6    https://doi.org/10.11896/cldb.21020038
  无机非金属及其复合材料 |
天然火山灰-水泥-粉煤灰复合浆体流变性能
侯悦悦1, 曾晓辉1, 龙广成1, 谢友均1, 肖丙辰3, 辜英晗2, 东怀正3, 潘自立2, 赵万强2, 杨江凡1
1 中南大学土木工程学院,长沙 410083
2 中铁二院工程集团有限责任公司,成都 610031
3 西藏铁路建设有限公司,拉萨 850000
Rheological Properties of Natural Pozzolan-Cement-Fly Ash Composite Slurry
HOU Yueyue1, ZENG Xiaohui1, LONG Guangcheng1, XIE Youjun1, XIAO Bingchen3, GU Yinghan2, DONG Huaizheng3, PAN Zili2, ZHAO Wanqiang2, YANG Jiangfan1
1 School of Civil Egineering, Central South University, Changsha 410083, China
2 China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China
3 Tibet Railway Construction Co., Ltd., Lhasa 850000, China
下载:  全 文 ( PDF ) ( 9395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用C-LTD80 QC型旋转粘度计研究了天然火山灰-水泥-粉煤灰复合浆体的流变行为,分析了天然火山灰掺量对浆体屈服应力、塑性粘度以及触变性的影响, 并采用Zeta电位仪探索其作用机理。结果表明:天然火山灰-水泥-粉煤灰复合浆体流变可分区段用Bingham模型及Herschel-Bulkley模型模拟;天然火山灰粒径分布跨度大,颗粒形状不规则,且密度小于水泥,等质量代替会增加浆体固相体积分数;天然火山灰使水泥浆体Zeta电位降低,浆体中粒子间静电作用力减弱,粒子更易相互吸附黏聚。而粉煤灰颗粒呈球状且表面光滑,使水泥浆体Zeta电位降低,粒子不易相互吸附黏聚。因此天然火山灰-水泥-粉煤灰复合浆体的屈服应力、塑性黏度和触变性随着天然火山灰掺量增加而增加,随粉煤灰的掺量增加而降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯悦悦
曾晓辉
龙广成
谢友均
肖丙辰
辜英晗
东怀正
潘自立
赵万强
杨江凡
关键词:  天然火山灰  天然火山灰-水泥-粉煤灰复合浆体  流变  Zeta电位    
Abstract: C-LTD80 QC rotary viscometer and Zeta were used to study the rheological behavior of natural pozzolan-cement-fly ash composite slurry. The effect of natural pozzolan content on the yield stress, plastic viscosity and thixotropy of the slurry were analyzed. On the other hand, the mechanism of action was explored by Zeta potential meter. The results show that the rheology of natural pozzolan-cement-fly ash composite slurry can be simulated by the Bingham model and the Herschel-Bulkley model together. Natural pozzolan has a large particle size distribution and irregular particle shape, and its density is less than cement. When equal mass is replaced, it will increase the volume fraction of the solid phase of the slurry; natural pozzolan reduces the Zeta potential of the cement slurry and weakens the electrostatic force between the particles in the slurry.The particles are easier to adsorb, cohesive with each other. The fly ash particles are spherical and have a smooth surface, which reduces the Zeta potential of the cement paste, and the particles are not easy to adsorb and agglomerate each other. Therefore, the yield stress, plastic viscosity and thixotropy of natural pozzolan-cement-fly ash composite slurry increase with the increase of natural pozzolan content, and decrease with the increase of fly ash content.
Key words:  natural volcanic ash    natural pozzolan-cement-fly ash composite slurry    rheology    Zeta potential
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TU528.45  
基金资助: 国家自然科学基金(52078490)
通讯作者:  zxhzlh@126.com   
作者简介:  侯悦悦,2018年6月于长安大学获得工学学士学位。现为中南大学土木工程学院硕士研究生,在曾晓辉教授的指导下进行研究。目前主要研究领域为隧道弃渣的资源化利用。
曾晓辉,中南大学土木工程学院教授、博士研究生导师。2004年7月于华东冶金学院本科毕业,2007年7月于中国建筑材料科学研究院硕士毕业,2010年8月于中南大学博士毕业。现任中国水泥协会特种水泥分会副理事长、全国水泥标准化委员会委员、中国电子显微镜学会无机非金属建筑材料微观测试与分析专业委员会委员、中国硅酸盐学会固废分会有机固废专委会委员。主要研究方向为川藏铁路混凝土性能研究,发表论文、专利共100余篇。
引用本文:    
侯悦悦, 曾晓辉, 龙广成, 谢友均, 肖丙辰, 辜英晗, 东怀正, 潘自立, 赵万强, 杨江凡. 天然火山灰-水泥-粉煤灰复合浆体流变性能[J]. 材料导报, 2022, 36(19): 21020038-6.
HOU Yueyue, ZENG Xiaohui, LONG Guangcheng, XIE Youjun, XIAO Bingchen, GU Yinghan, DONG Huaizheng, PAN Zili, ZHAO Wanqiang, YANG Jiangfan. Rheological Properties of Natural Pozzolan-Cement-Fly Ash Composite Slurry. Materials Reports, 2022, 36(19): 21020038-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020038  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21020038
1 Yuan Q, Yang Z Z, Shi C J, et al. Bulletin of the Chinese Ceramic Society,2020,39(8),2379(in Chinese).
元强, 杨珍珍, 史才军, 等.硅酸盐通报,2020, 39(8),2379.
2 Zhao M. Feasibility study on the application of finely ground natural volcanic limestone in cement concrete in Hetian area of Xinjiang. Master's Thesis, Xinjiang Agricultural University,China, 2015(in Chinese).
赵明.新疆和田地区磨细天然火山灰岩在水泥混凝土中应用的可行性研究.硕士学位论文, 新疆农业大学, 2015.
3 Pang B, Xiao L G. Bulletin of the Chinese Ceramic Society,2017,36(8),2781(in Chinese).
庞博, 肖力光.硅酸盐通报,2017,36(8),2781.
4 Li X, Shi Y, Li J Z, et al. Journal of Building Materials,2017,20(3),435(in Chinese).
李响, 石妍, 李家正, 等.建筑材料学报,2017,20(3),435.
5 Yu L H, Zhou S X, Ou H, et al. Journal of the Chinese Ceramic Society, 2013,41(10),1387(in Chinese).
喻乐华, 周双喜, 欧辉, 等.硅酸盐学报,2013,41(10),1387.
6 Celik K, Hay R, Hargis C W. Construction and Building Materials, 2018,11,193.
7 Habert G, Choupay N, Montel J M, et al. Cement and Concrete Research, 2008,38,963.
8 Dale P B, Chiara F F, Michael A G, et al.Cement and Concrete Research, 2012,42, 404.
9 Ferraris C F, Martys N S. Journal of Research of the National Institute of Standards and Technology, 2003,108, 229.
10 Papo A, Piani L, Ricceri R. Journal Chemical Engineering, 2010,68,2914.
11 Lee S H, Kim H J, Sakai E, et al. Cement Concrete Research, 2003,33,763.
12 Tchamdjoua W H J, Cherradia T, Abidia M L, et al. Energy Procedia, 2017,139,696.
13 Hedayatinia F, Delnavaz M, Emamzadeh S S. Construction and Building Materials, 2019, 206,122.
14 Feng J, Ma K L, Long G C. Journal of Railway Science and Engineering, 2015,12(3),534(in Chinese).
冯金,马昆林,龙广成.铁道科学与工程学报,2015, 12(3),534.
15 Du J, Zhang J, Yang X N. Journal of Qingdao University of Technology, 2009, 30(4) 180(in Chinese).
杜俊,张健, 杨向宁. 青岛理工大学学报, 2009,30(4),180.
16 Wu L,Wang X G,Ren X. Bulletin of the Chinese Ceramic Society, 2014,33(9),2393(in Chinese).
吴浪,王信刚,任晓.硅酸盐通报,2014,33(9),2393.
17 Jiang L F, Li C B, Yang S H, et al. New Building Material, 2019,46(7),45(in Chinese).
蒋林峰,李从波,杨斯豪,等. 新型建筑材料,2019, 46(7),45.
18 Zhang Y J, Zhang X. Journal of Tongji University, 2003,31(9),1059(in Chinese).
张永娟,张雄. 同济大学学报,2003,31(9),1059.
19 Yuan L, Wang H, Journal of Huainan Institute of Technology, 2001,21(4),43(in Chinese).
袁玲,王骅. 淮南工业学院学报,2001,21(4),43.
20 Xiao J, Han K D,Zhang Z D, et al. Journal of Building Materials, 2020,23(6),1259(in Chinese).
肖佳,韩凯东,张泽的,等.建筑材料学报, 2020,23(6),1259.
21 Xiao J, Zhou S H, Wang D F, et al. Acta Materiae Compositae Sinica, 2018,35(8),2185(in Chinese).
肖佳,周书会,王大富,等. 复合材料学报,2018,35(8),2185.
22 Cao R. Hunan Communication Science and Technology, 2015,41(4),57(in Chinese).
曹睿.湖南交通科技,2015,41(4),57.
23 Zhang L R, Hao B, Liu Z H, et al. Commercial Concrete, 2011(9),35(in Chinese).
张力冉,郝兵,刘治华,等.商品混凝土, 2011(9),35.
24 Zhou S, Tong L, Chen X W. Architecture Technology, 2017,48(10),1022(in Chinese).
周帅,佟琳,陈喜旺.建筑技术,2017,48(10),1022.
25 Liu Y, Li M Y,Yan P Y. Journal of the Chinese Ceramic Society, 2019,49(5),594.
刘宇,黎梦圆,阎培渝. 硅酸盐学报,2019,49(5),594.
26 Xiao J, Wang D F, He Y Q, et al. Journal of Building Materials, 2017,20(4),501(in Chinese).
肖佳,王大富,何彦琪,等.建筑材料学报,2017,20(4),501.
27 Wen Y, Li M, Wang H, et al.Concrete, 2016,28(5),97(in Chinese).
温勇,李梅,王衡,等.混凝土,2016,28(5),97.
[1] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[2] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[3] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[4] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[5] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[6] 肖强, 王嘉琪, 靳龙平. 磁流变抛光关键技术及工艺研究进展[J]. 材料导报, 2022, 36(7): 20080279-10.
[7] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[8] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[9] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[10] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[11] 伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
[12] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[13] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[14] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[15] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed