Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20090176-7    https://doi.org/10.11896/cldb.20090176
  高分子与聚合物基复合材料 |
聚合物和纤维对石膏基材料早期水化与浆体微结构的影响
刘川北1, 高建明2, 孟礼元3, 刘来宝1, 张礼华1, 张红平1, 罗旭2
1 西南科技大学材料科学与工程学院,四川 绵阳 621010
2 东南大学材料科学与工程学院,南京 211189
3 南充四新建材有限公司,四川 南充 637973
Influence of Polymers and Fibers on Early Hydration and Microstructure of Gypsum-based Materials
LIU Chuanbei1, GAO Jianming2, MENG Liyuan3, LIU Laibao1, ZHANG Lihua1, ZHANG Hongping1, LUO Xu2
1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 Nanchong Sixin Building Materials Co., Ltd., Nanchong 637973, Sichuan, China
下载:  全 文 ( PDF ) ( 6639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究石膏基材料的早期水化与浆体微结构对于理解不同外加剂对石膏基材料的作用机理以及改善石膏基材料浆体的工作性能都具有十分重要的意义。本工作采用水化热测试、动态流变测试以及液氮冷冻与环境扫描电镜测试相结合等方法,系统研究了聚乙烯醇(PVA)、丁苯橡胶(SBR)、聚乙烯醇纤维(PVAF)和聚丙烯纤维(PPF)对石膏基材料早期水化过程和浆体微观结构变化的影响。结果表明:石膏基材料的早期水化主要包括半水石膏颗粒溶解、二水石膏晶体成核、生长发育以及晶体网络结构形成四个过程;PVA一方面吸附在半水石膏颗粒表面,阻碍颗粒间有效接触和溶解,另一方面分散到浆体间隙溶液中,吸收大量自由水分并使有效水膏比降低,从而加快晶体成核;SBR吸附到石膏颗粒表面会使絮凝结构解体,同时阻碍颗粒溶解、晶体成核、生长发育以及晶体网络结构形成;两种纤维分散到石膏颗粒间可以促进絮凝网络结构形成,同时亲水性PVAF表面还吸附了大量自由水分和Ca2+,使晶体优先在其表面成核,从而改善纤维与浆体的界面和粘接性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘川北
高建明
孟礼元
刘来宝
张礼华
张红平
罗旭
关键词:  石膏基材料  振荡流变  水化热  微观结构    
Abstract: It is of great significance to study the early hydration and microstructure of gypsum-based materials (GM) for understanding the working mechanism of different admixtures and improving the workability of pastes. Therefore, in this work the early hydration and microstructure of GM pastes containing polyvinyl alcohol (PVA), butadiene styrene rubber (SBR), polyvinyl alcohol fiber (PVAF) and polypropylene fiber (PPF) were investigated by the hydration heat test method, oscillatory rechnology test method and environment scanning electron microscope (ESEM) coupling with liquid nitrogen cooling method. The results show that the early hydration of GM pastes can be divided into four stages, which are the dissolution of hemihydrate particles, the nucleation, growth of dihydrate crystals and the formation of crystal-network-structures (CNS).It has been pro-ven that both polymers can be adsorbed on hemihydrate particles, hindering the effective contact and dissolution of particles. Simultaneously, SBR can be also preferentially adsorbed on dihydrate crystals, impeding the growth of crystals and formation of CNS. Besides, both fibers dispersing among gypsum particles can strengthen flocculation structures, and simultaneously PVAF can absorb a lot of free water and calcium ions, which makes the preferential nucleation of crystals on its surface, therefore improving the interface and binding properties between PVAF and pastes.
Key words:  gypsum-based materials    oscillatory rechnology    hydration heat    microstructure
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TU526  
基金资助: 国家自然科学基金(51978590; 51808464);西南科技大学博士基金(20zx7107)
通讯作者:  liulaibao@swust.edu.cn   
作者简介:  刘川北,2019年12月毕业于东南大学,获得工学博士学位。现在西南科技大学材料科学与工程学院担任讲师,主要从事无机胶凝材料流变性的研究。
刘来宝,博士,西南科技大学材料科学与工程学院教授,主要从事功能与环境友好土木工程材料方向研究,目前在国内外重要期刊发表文章20多篇,申请国家发明专利6项。
引用本文:    
刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
LIU Chuanbei, GAO Jianming, MENG Liyuan, LIU Laibao, ZHANG Lihua, ZHANG Hongping, LUO Xu. Influence of Polymers and Fibers on Early Hydration and Microstructure of Gypsum-based Materials. Materials Reports, 2022, 36(8): 20090176-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090176  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20090176
1 Lucas G. ZKG International,2003,56,54.
2 Chindaprasirt P, Boonserm K, Chairuangsri T, et al. Construction and Building Materials,2011,25(8),3193.
3 Wu H C, Xia Y M, Hu X Y, et al. Ceramics International,2014,40,14899.
4 Zhi Z Z, Huang J, Guo Y F, et al. KSCE Journal of Civil Engineering,2017,21(5),1836.
5 Liu C B, Gao J M, Tang Y B, et al. Journal of Materials Science,2018,53(24),16415.
6 Jin C, Zhao H, Jiang L L, et al. Bulletin of the Chinese Ceramic Society,2015(6),1504(in Chinese).
金纯,赵辉,江莉莉,等.硅酸盐通报,2015(6),1504.
7 Li D, Zhao Z M, Quan S C, et al. Non-Metallic Mines,2019,42(4),44(in Chinese).
李丹,赵志曼,全思臣,等.非金属矿,2019,42(4),44.
8 Çolak A. Materials Letters,2006,60(16),1977.
9 Cao W X, Peng J H, Yi W, et al. Non-Metallic Mines,2018,41(2),48(in Chinese).
曹文湘,彭家惠,易伟,等.非金属矿,2018,41(2),48.
10 Eve S, Gomina M, Hamel J, et al. Journal of the European Ceramic So-ciety,2006,26,2541.
11 Zhu C, Zhang J X, Peng J H, et al. Construction and Building Materials,2018,163,695.
12 Zhang W B, Xiong F, Yu M J, et al. China Concrete and Cement Pro-ducts,2015(10),77(in Chinese).
张维渤,熊峰,余明玖,等.混凝土与水泥制品,2015(10),77.
13 Liu C, Gao J, Tang Y, et al. Materials Letters,2019,234,49.
14 Betioli A M, Gleize P J P, Silva D A, et al. Cement and Concrete Research,2009,39(5),440.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[3] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[4] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[5] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[6] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[7] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[8] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[9] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[10] 宋少民, 王宇杰, 李统彬. 新型胶凝材料体系的抗裂性能[J]. 材料导报, 2021, 35(Z1): 206-210.
[11] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[12] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[13] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[14] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[15] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed