Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 22010197-8    https://doi.org/10.11896/cldb.22010197
  无机非金属及其复合材料 |
大晶粒UO2燃料芯块性能研究进展
庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超*
中国核动力研究设计院核反应堆系统设计技术重点实验室,成都 610213
Research Progress on the Properties of Large Grain Uranium Dioxide Fuel
PANG Hua, XIN Yong, YUE Huifang, PENG Hang, PU Zengping, QIU Xi, SUN Zhipeng, LIU Shichao*
Laboratory of Science and Technology on Reactor System Design Technology, Nuclear Power Institute of China, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 4488KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大晶粒UO2芯块相比于传统UO2芯块而言,具有更低的辐照肿胀、更低的裂变气体释放量以及优异的抗芯块-包壳相互作用的能力。大晶粒UO2芯块作为高燃耗、长换料周期新型燃料具有很大的应用潜力,近年来受到越来越多的关注。国内外学者针对大晶粒UO2芯块开展了大量的研究,包括芯块的微观结构、烧结特性以及辐照行为等,结果表明,大晶粒UO2芯块在高燃耗和长换料周期条件下表现出优异的堆内性能,在提高压水堆核电站的经济性的同时,可以有效提高其安全性。近年来,研究人员针对大晶粒UO2芯块在欧洲、美国、俄罗斯和中国等国开展了大量的堆内辐照考验,考验的环境包括压水堆、沸水堆和高温堆等。对大晶粒UO2芯块堆内、外性能的相关研究,为芯块制备、堆内性能预测、反应堆燃料元件设计以及燃料元件工业化生产提供了支撑。本文根据国内外关于大晶粒UO2燃料芯块的研究进展,系统总结了大晶粒UO2芯块微观结构、堆外热-力学性能、大晶粒UO2芯块堆内行为,介绍了不同掺杂类型大晶粒UO2芯块的性能,分析了大晶粒UO2燃料元件行为,并指出了大晶粒UO2芯块应用所面临的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞华
辛勇
岳慧芳
彭航
蒲曾坪
邱玺
孙志鹏
刘仕超
关键词:  大晶粒二氧化铀  堆内性能  力学性能  微观结构    
Abstract: Large grain uranium dioxide possessed much lower irradiation swelling and amount of fission gas release, much more excellent resist ability to the pellet and cladding interaction than the traditional UO2 pellet. Large grain UO2 pellet is a kind of new fuel with great application potential for high burn up and long reloading reactor, which has attracted more and more attention in recent years. Lots of studies on the properties of large grain UO2 pellet have been conducted, including microstructure, sintering properties and irradiation behavior. The research result indicates that large grain UO2 pellet exhibited more excellent in-pile performance than traditional ones under high burn-up and long reloading cycle, thus the application of large grain UO2 pellet can improve the safety and economy of the reactor. Irradiation tests have been conducted in European, American, Russia and other countries, and the testing environments include the boiling water reactor (BWR), pressure water reactor (PWR) and high temperature reactor (HTR). The research on the in-pile and out-pile properties of large grain UO2 pellet offered the basics for the fabrication, in-pile performance prediction, fuel element design and commercial process. In this paper, the microstructure, out-pile thermal-mechanical properties, in-pile performance of large grain UO2 pellets were summarized based on the research at home and abroad. The properties of large grain UO2 pellet with different additives were also introduced. Furthermore, the performance of large grain UO2 fuel element was analyzed and the application problem was pointed out.
Key words:  large grain uranium dioxide    in-pile properties    mechanical properties    microstructure
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TL35  
基金资助: 国家自然科学基金(12005213;U20B2013);中核集团“青年英才”项目
通讯作者:  hit_lsc@163.com   
作者简介:  庞华,中国核动力研究设计院核动力装置项目副总师,核动力院燃料元件设计技术学科带头人、科技委燃料与材料组委员,研究员级高级工程师,硕士生导师。2000年重庆大学材料学专业硕士毕业后,到中国核动力研究设计院设计所工作至今。目前主要从事核动力燃料元件设计、燃料材料设计等研究工作。发表科技论文30余篇,授权发明专利17项,授权实用新型专利7项,编写国军标5项,获得军队科学技术进步奖1项。
刘仕超,2015年12月于哈尔滨工业大学获得工学博士学位,2018年获得高级工程师职称。现于中国核动力研究设计院从事燃料材料设计工作。主要从事UO2陶瓷燃料、高铀密度陶瓷燃料以及全陶瓷弥散微封装燃料的设计研究工作,发表SCI共计20余篇,授权专利12项,撰写国标及行业标准2项,2021年被聘为中核集团“青年英才”,主持和申请国家自然科学基金青年基金1项、重点联合基金3项。
引用本文:    
庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
PANG Hua, XIN Yong, YUE Huifang, PENG Hang, PU Zengping, QIU Xi, SUN Zhipeng, LIU Shichao. Research Progress on the Properties of Large Grain Uranium Dioxide Fuel. Materials Reports, 2022, 36(4): 22010197-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010197  或          http://www.mater-rep.com/CN/Y2022/V36/I4/22010197
1 Yang C, Fang C, Dong J J, et al.Nuclear Power Engineering, 2014, 35 (1), 200(in Chinese).
杨辰, 房超, 童节娟,等.核动力工程, 2014, 35 (1), 200.
2 Palanki B. Journal of Nuclear Materials, 2021, 550(6), 152918.
3 Zhang P J, Zhong P H.Uranium Mining and Metallurgy, 2021, 40(4), 304(in Chinese).
张鹏卷,钟鹏鹤.铀矿冶, 2021, 40(4), 304.
4 Yang J H, Kim K S, et al. Journal of Nuclear Materials,2012,429,25.
5 Une K, Kashibe S,Ito K, et al. Journal of Nuclear Science and Technology, 1993, 30, 221.
6 Mieszczynski C, Kuri G,Degueldre C,et al. Journal of Nuclear Mate-rials, 2014, 444, 274.
7 Yao T, Scott S M, Xin G, et al. Journal of Nuclear Materials, 2016, 469, 251.
8 Wang H, Liang J Y, Huang H, et al.Ceramics International, 2014, 40, 4421.
9 Fujino T, Shiratori T, Sato N, et al. Journal of Nuclear Materials, 2001,297, 176.
10 Middleburgh S C, Grimes R W, Desai K H, et al. Journal of Nuclear Materials, 2012, 427,359.
11 Arborelius J, Backman B, Hallstadius L.Journal of Nuclear Materials, 2006, 43,967.
12 Cooper M W D, Stanek C R, Andersson D A. Acta Materialia, 2018, 150, 403.
13 Yanagisawa K.ournal of Nuclear Materials, 1995, 32, 111.
14 Sengupta A K, Basak C B, Jarvis T. Journal of Nuclear Materials, 2004, 325, 141.
15 CardinaelsT, Govers K, Vos B. Journal of Nuclear Materials, 2014, 424, 252.
16 Latta R, Revankar S T, Solomon A A. Heat Transfer Engineering, 2008, 29(4), 357.
17 Massih A R, Jernkvist L O. In: 23rd Conference on Structural Mechanics in Reactor Technology. Manchester, United Kingdom, 2015, pp.11.
18 Rhee Y W, Kang K W.Journal of Nuclear Science and Technology, 2005, 37, 287.
19 Kang K W, Yang J H, Kim J H. Journal of Nuclear Science and Techno-logy, 2010, 47, 304.
20 Song K W, Kim S H. Journal of Nuclear Materials, 1994, 209, 280.
21 Novikov V V, Sivov R B,Mikheev E N, et al. Atomic Energy, 2015, 118(2), 117.
22 Massih A R. In: Swedish Radiation Safety Authority. Betou,2014,pp.74.
23 Jakob A, Karin B. Journal of Nuclear Science and Technology, 2006, 43, 967.
24 Martial C R, Martin P, Testemale D,et al. Journal of Nuclear Materials, 2014, 447, 63.
25 Peres V, Faverueon L, Andrieu M,et al. Journal of Nuclear Materials, 2012, 423, 93.
26 Fink J. Journal of Nuclear Materials, 2000, 279, 1.
27 Une K. Nuclear Science and Technology, 2005, 43, 960.
28 Hirai M, Davies J H,Williamson R, et al. ournal of Nuclear Materials, 1995, 226, 238.
29 Middleburgh S C, Grimes R W.Journal of Nuclear Materials, 2012, 427, 359.
30 Cooper M W D, Pastore G, Che Y, et al. Journal of Nuclear Materials, 2020, 20, 315.
31 Che Y, Pastore G, Hales J, et al. Nuclear Engineering and Design,2018, 337, 271.
32 Delafoy C,Bischoff J, Larocque P. In: Proceedings of Top Fuel 2018. Prague, 2018, pp, 10.
33 Arborelius J, Backman K, Hallstadius L.Journal of Nuclear Science and Technology, 2006, 43, 967.
34 Brachet J C,Saux M L, Chaillioux V L. In: Proceedings of Top Fuel 2016 Conference. Boise, 2016, pp,324.
35 KilleenJ C. Journal of Nuclear Materials, 1980, 88, 177.
36 Rodney J, White J. In: Proceedings of a Technical Committee meeting. Windermere, United Kingdom, 2000, pp, 23.
37 Matthews C, Perriot R, Cooper M W D, et al. Journal of Nuclear Mate-rials, 2019, 527, 151787.
38 Kashibe S, Une K. Journal of Nuclear Materials, 1998, 254, 234.
39 Ball R J, Grimes R W. Journal of Chemistry Society, 1990, 86, 1257.
40 Massih J A, Forsberg K. Journal of Nuclear Science and Technology, 1974, 30,47.
41 Kang K W, Yang J H, Kim J H, et al. Journal of Nuclear Science and Technology, 2010, 45, 1150.
42 Delafoy C, Blanpain P, Maury C. In: Top Fuel 2003.Würzburg, 2003, pp.112.
43 Woolstenhulme N E, Jensen C B, Kamerman D W. In: Top Fuel 2019. Seattle, Washington, 2019, pp.210.
44 Bischoff J, Delafoy C, Chaari N. In: Top Fuel 2019. Seattle, Washington, 2019, pp.109.
45 Bragg-Sitton S M. Nuclear Technology, 2016, 195, 113.
[1] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[2] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[3] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[4] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[5] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[6] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[7] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[8] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[9] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[13] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[14] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[15] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed