Abstract: Large grain uranium dioxide possessed much lower irradiation swelling and amount of fission gas release, much more excellent resist ability to the pellet and cladding interaction than the traditional UO2 pellet. Large grain UO2 pellet is a kind of new fuel with great application potential for high burn up and long reloading reactor, which has attracted more and more attention in recent years. Lots of studies on the properties of large grain UO2 pellet have been conducted, including microstructure, sintering properties and irradiation behavior. The research result indicates that large grain UO2 pellet exhibited more excellent in-pile performance than traditional ones under high burn-up and long reloading cycle, thus the application of large grain UO2 pellet can improve the safety and economy of the reactor. Irradiation tests have been conducted in European, American, Russia and other countries, and the testing environments include the boiling water reactor (BWR), pressure water reactor (PWR) and high temperature reactor (HTR). The research on the in-pile and out-pile properties of large grain UO2 pellet offered the basics for the fabrication, in-pile performance prediction, fuel element design and commercial process. In this paper, the microstructure, out-pile thermal-mechanical properties, in-pile performance of large grain UO2 pellets were summarized based on the research at home and abroad. The properties of large grain UO2 pellet with different additives were also introduced. Furthermore, the performance of large grain UO2 fuel element was analyzed and the application problem was pointed out.
庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
PANG Hua, XIN Yong, YUE Huifang, PENG Hang, PU Zengping, QIU Xi, SUN Zhipeng, LIU Shichao. Research Progress on the Properties of Large Grain Uranium Dioxide Fuel. Materials Reports, 2022, 36(4): 22010197-8.
1 Yang C, Fang C, Dong J J, et al.Nuclear Power Engineering, 2014, 35 (1), 200(in Chinese). 杨辰, 房超, 童节娟,等.核动力工程, 2014, 35 (1), 200. 2 Palanki B. Journal of Nuclear Materials, 2021, 550(6), 152918. 3 Zhang P J, Zhong P H.Uranium Mining and Metallurgy, 2021, 40(4), 304(in Chinese). 张鹏卷,钟鹏鹤.铀矿冶, 2021, 40(4), 304. 4 Yang J H, Kim K S, et al. Journal of Nuclear Materials,2012,429,25. 5 Une K, Kashibe S,Ito K, et al. Journal of Nuclear Science and Technology, 1993, 30, 221. 6 Mieszczynski C, Kuri G,Degueldre C,et al. Journal of Nuclear Mate-rials, 2014, 444, 274. 7 Yao T, Scott S M, Xin G, et al. Journal of Nuclear Materials, 2016, 469, 251. 8 Wang H, Liang J Y, Huang H, et al.Ceramics International, 2014, 40, 4421. 9 Fujino T, Shiratori T, Sato N, et al. Journal of Nuclear Materials, 2001,297, 176. 10 Middleburgh S C, Grimes R W, Desai K H, et al. Journal of Nuclear Materials, 2012, 427,359. 11 Arborelius J, Backman B, Hallstadius L.Journal of Nuclear Materials, 2006, 43,967. 12 Cooper M W D, Stanek C R, Andersson D A. Acta Materialia, 2018, 150, 403. 13 Yanagisawa K.ournal of Nuclear Materials, 1995, 32, 111. 14 Sengupta A K, Basak C B, Jarvis T. Journal of Nuclear Materials, 2004, 325, 141. 15 CardinaelsT, Govers K, Vos B. Journal of Nuclear Materials, 2014, 424, 252. 16 Latta R, Revankar S T, Solomon A A. Heat Transfer Engineering, 2008, 29(4), 357. 17 Massih A R, Jernkvist L O. In: 23rd Conference on Structural Mechanics in Reactor Technology. Manchester, United Kingdom, 2015, pp.11. 18 Rhee Y W, Kang K W.Journal of Nuclear Science and Technology, 2005, 37, 287. 19 Kang K W, Yang J H, Kim J H. Journal of Nuclear Science and Techno-logy, 2010, 47, 304. 20 Song K W, Kim S H. Journal of Nuclear Materials, 1994, 209, 280. 21 Novikov V V, Sivov R B,Mikheev E N, et al. Atomic Energy, 2015, 118(2), 117. 22 Massih A R. In: Swedish Radiation Safety Authority. Betou,2014,pp.74. 23 Jakob A, Karin B. Journal of Nuclear Science and Technology, 2006, 43, 967. 24 Martial C R, Martin P, Testemale D,et al. Journal of Nuclear Materials, 2014, 447, 63. 25 Peres V, Faverueon L, Andrieu M,et al. Journal of Nuclear Materials, 2012, 423, 93. 26 Fink J. Journal of Nuclear Materials, 2000, 279, 1. 27 Une K. Nuclear Science and Technology, 2005, 43, 960. 28 Hirai M, Davies J H,Williamson R, et al. ournal of Nuclear Materials, 1995, 226, 238. 29 Middleburgh S C, Grimes R W.Journal of Nuclear Materials, 2012, 427, 359. 30 Cooper M W D, Pastore G, Che Y, et al. Journal of Nuclear Materials, 2020, 20, 315. 31 Che Y, Pastore G, Hales J, et al. Nuclear Engineering and Design,2018, 337, 271. 32 Delafoy C,Bischoff J, Larocque P. In: Proceedings of Top Fuel 2018. Prague, 2018, pp, 10. 33 Arborelius J, Backman K, Hallstadius L.Journal of Nuclear Science and Technology, 2006, 43, 967. 34 Brachet J C,Saux M L, Chaillioux V L. In: Proceedings of Top Fuel 2016 Conference. Boise, 2016, pp,324. 35 KilleenJ C. Journal of Nuclear Materials, 1980, 88, 177. 36 Rodney J, White J. In: Proceedings of a Technical Committee meeting. Windermere, United Kingdom, 2000, pp, 23. 37 Matthews C, Perriot R, Cooper M W D, et al. Journal of Nuclear Mate-rials, 2019, 527, 151787. 38 Kashibe S, Une K. Journal of Nuclear Materials, 1998, 254, 234. 39 Ball R J, Grimes R W. Journal of Chemistry Society, 1990, 86, 1257. 40 Massih J A, Forsberg K. Journal of Nuclear Science and Technology, 1974, 30,47. 41 Kang K W, Yang J H, Kim J H, et al. Journal of Nuclear Science and Technology, 2010, 45, 1150. 42 Delafoy C, Blanpain P, Maury C. In: Top Fuel 2003.Würzburg, 2003, pp.112. 43 Woolstenhulme N E, Jensen C B, Kamerman D W. In: Top Fuel 2019. Seattle, Washington, 2019, pp.210. 44 Bischoff J, Delafoy C, Chaari N. In: Top Fuel 2019. Seattle, Washington, 2019, pp.109. 45 Bragg-Sitton S M. Nuclear Technology, 2016, 195, 113.