Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 21030081-11    https://doi.org/10.11896/cldb.21030081
  无机非金属及其复合材料 |
三级金属氢化物氢压缩机设计及氢压缩材料的研究进展
欧阳柳章1,2, 彭琢雅1, 王辉1,2, 刘江文1,2, 朱敏1,2
1 华南理工大学材料科学与工程学院,广州 510641
2 华南理工大学广东省先进储能材料工程技术研究中心,广州 510641
Design of a Three-stage Metal Hydride Hydrogen Compressor and Progress of Hydrogen Compression Materials
OUYANG Liuzhang1,2, PENG Zhuoya1, WANG Hui1,2, LIU Jiangwen1,2, ZHU Min1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
2 Advanced Energy Storage Materials Engineering Technology Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 2672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着氢能产业的发展,氢燃料电池汽车因无污染、零排放等优点逐渐进入公众的视野,引起了人们的强烈关注。在氢燃料电池汽车系统中,车载储氢罐发挥着至关重要的作用,为提高其体积储氢密度并确保其应用的安全性,国际标准组织氢技术委员会规定储氢罐最多可充入70 MPa的氢气。因此,实现氢气的安全、高效加注是氢燃料电池汽车市场化的关键,这也对加氢站中氢压缩机的研发提出了更高的要求。   现阶段,大多数已建成的加氢站均使用机械式氢压缩机,其普遍存在安全性差、振动与噪音大以及维护成本高等缺点。金属氢化物氢压缩机是利用储氢合金(氢压缩材料)在不同温度下平台压的不同对氢气进行增压。相比传统的机械式氢压缩机,金属氢化物氢压缩机具有安全、环保、无振动和噪音、密封性好、无摩擦、能有效提纯氢气以及维护成本低等优点。为提升其加氢压力和压缩比,通常将几种不同的氢压缩材料串接设计为多级氢压缩机。而提升各级氢压缩材料的热力学与动力学性能则是优化整个金属氢化物氢压缩系统性能的关键。   氢压缩材料的改性主要集中于合金化。例如:LaNi5合金A侧常被混合稀土Mm和Ml取代,而B侧常被Co、Al、Mn、Sn等元素取代,改性后的AB5型合金因具有较低的吸放氢平台、较强的抗毒化性能与循环稳定性,通常作为高密度储氢材料或初级氢压缩材料;而TiCr2合金A侧常被同族的Zr取代,B侧常被同周期的V、Mn、Fe、Co、Ni等元素取代,改性后的AB2型合金具有较高的吸放氢平台、较大的储氢量,一般可作为中级或末级氢压缩材料。除此之外,具有极高平台压的ZrFe2基合金也是应用于氢压缩领域的潜在材料。   本文首先介绍了金属氢化物氢压缩机的工作原理与特点,然后设计了三级氢压缩机系统并综述了各级氢压缩材料的研究进展,最后还对未来氢压缩材料的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
欧阳柳章
彭琢雅
王辉
刘江文
朱敏
关键词:  加氢站  金属氢化物氢压缩机  氢压缩材料  储氢合金  热力学性能    
Abstract: Continuously rising concerns over dwindling resources of conventional energy and the environmental issues of burning fossil fuels have promoted extensive efforts on the development of hydrogen fuel cell vehicles (HFCVs) powered by clean and renewable hydrogen energy. The onboard hydrogen compressed tank is a good choice for hydrogen storage, transportation, and usage in HFCVs systems. To increase the volumetric hydrogen storage density and ensure the safe application of tanks, the maximum pressure of tanks is limited to 70 MPa H2 by the Standard Organization Hydrogen Technical Committee. Currently, achieving safe and efficient charging/recharging of hydrogen is a linchpin in accelerating the marketization of HFCVs, thus stimulating higher requirements for the hydrogen compressors in hydrogen refueling stations (HRSs). To date, there are a series of disadvantages in most of the in-service HRSs using mechanical hydrogen compressors, such as poor safety, severe vibration and noise pollution, and high maintenance costs, etc. To overcome these issues, metal hydride hydrogen compressors (MHHCs) are applied in the filling of HFCVs systems, with hydrogen storage alloys acting as hydrogen compression materials, enabling different plateau pressures under varied temperatures. The MHHCs possess numerous advantages that merit their hydrogen storage applications, including reliable safety, environmental friendliness, high-efficiency hydrogen purification, and low maintenance costs, as opposed to the traditional ones. To meet the real-time demand of the output pressure and compression ratio, the MHHCs are designed as a series of multi-level hydrogen compressors by loading with different hydrogen compression materials. In this regard, the optimization of the thermodynamics and kinetics of the hydrogen compression materials is the pivotal factor for the whole metal hydride hydrogen compression system. The modification of hydrogen compression materials mainly focuses on alloying, namely, replacing the A-side of AB5 (such as LaNi5) alloy with mixed rare earth elements Mm and Ml and the B-side with Co, Al, Mn, Sn, etc. Owing to their low hydrogen absorption/desorption plateau, stable anti-poisoning performance as well as cycling stability, the modified AB5-type alloys are widely applied in high-density hydrogen storage or primary hydrogen compression materials. Similarly, the A and B sides of TiCr2 alloy can be usually substituted by Zr and V, Mn, Fe, Co, Ni, etc. The modified AB2-type alloys hold as much higher dehydrogenation/hydrogenation plateau and hydrogen storage capacity as the former ones, thus acting as intermediate or final-level hydrogen compression materials. Also, ZrFe2-based alloys with extremely high plateau pressures are considered as one of the potential materials for hydrogen compression. Overall, this review briefly narrates the working principle and characteristics of MHHCs and is followed by thedesign of three-stage hydrogen compressors. Afterward, we focus on the recent advances of the corresponding hydrogen compression materials. Finally, the future development of hydrogen compression materials is also discussed.
Key words:  hydrogen refueling station    metal hydride hydrogen compressor    hydrogen compression material    hydrogen storage alloy    thermodynamic property
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TG139+.7  
基金资助: 国家重点研发计划项目(2019YFB1505101);国家自然科学基金创新群体项目(51621001)
通讯作者:  meouyang@scut.edu.cn   
作者简介:  欧阳柳章,珠江学者特聘教授,教育部新世纪优秀人才,华南理工大学材料科学与工程学院副院长、教授、博士研究生导师。1994年7月本科毕业于燕山大学,2001年6月在华南理工大学取得博士学位。欧阳柳章教授主要从事先进储能材料、材料合成与制备新方法方面的研究,先后主持国家国际科技合作项目、国家自然科学基金等国家及省部级科研项目近20项;申请国家专利30多件;培养硕、博研究生30多名;2017年获教育部技术发明奖(一等奖)。同时,欧阳教授还在Nature Communication、Advanced Energy Mate-rials、Angewandte Chemie International Editon、Journal of Materials Chemistry、ACS Applied Materials & Interfaces、Journal of Alloys & Compounds等国际学术期刊上发表论文300余篇,被引用超过9 000次,H因子59。
引用本文:    
欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
OUYANG Liuzhang, PENG Zhuoya, WANG Hui, LIU Jiangwen, ZHU Min. Design of a Three-stage Metal Hydride Hydrogen Compressor and Progress of Hydrogen Compression Materials. Materials Reports, 2022, 36(1): 21030081-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030081  或          http://www.mater-rep.com/CN/Y2022/V36/I1/21030081
[1] Li X G. Hydrogen and hydrogen energy, China Machine Press, China, 2012,pp.48(in Chinese).
李星国. 氢与氢能, 机械工业出版社, 2012,pp.48.
[2] Zhu M.Introduction to advanced hydrogen storage materials, Science Press, China, 2015,pp.6(in Chinese).
朱敏. 先进储氢材料导论, 科学出版社, 2015,pp.6.
[3] De Almeida S, Kruczan R. International Journal of Hydrogen Energy, 2021, 46(79), 39404.
[4] Peng Z Y, Li Q, Ouyang L Z, et al. Journal of Alloys and Compounds, 2022, 895, 162465.
[5] Sdanghi G, Maranzana G, Celzard A, et al. Renewable and Sustainable Energy Reviews, 2019, 102, 150.
[6] Muthukumar P, Singh Patel K, Sachan P, et al.International Journal of Hydrogen Energy, 2012, 37(4), 3797.
[7] Sharma V K, Anil Kumar E. International Journal of Energy Research, 2017, 41(7), 901.
[8] Lototskyy M V, Yartys V A, Pollet B G, et al. International Journal of Hydrogen Energy, 2014, 39(11), 5818.
[9] Lototskyy M V, Yartys V A, Tarasov B P, et al.International Journal of Hydrogen Energy, 2021, 46(2), 2330.
[10] Lototskyy M V, Yartys V A, Tarasov B P, et al.International Journal of Hydrogen Energy, 2021, 46(2), 2339.
[11] Nayebossadri S, Book D. Renewable Energy, 2019, 143, 1010.
[12] Wiswall R, Reilly J. patent, US3516263, 1970.
[13] Muthukumar P, Prakash Maiya M, Murthy S S. International Journal of Hydrogen Energy, 2002, 27(10), 1083.
[14] Zhang Y. An ivestigation on the hydrogen storage alloys used for metal hrdride hydrogen compression. Master's Thesis, Zhejiang University, China, 2005(in Chinese).
张琰. 用于金属氢化物化学氢压缩的储氢合金的研究. 硕士学位论文, 浙江大学, 2005.
[15] Yasuai O. Properties and applications of mental hydrides, Chemical Industry Press, China, 1990,pp.56(in Chinese).
大角泰章. 金属氢化物的性质与应用, 化学工业出版社, 1990,pp.56.
[16] Williams M, Lototsky M V, Davids M W, et al. Journal of Alloys and Compounds, 2011, 509, S770.
[17] Sandrock G. Journal of Alloys and Compounds, 1999, 293-295, 877.
[18] Modibane K D, Williams M, Lototskyy M, et al. International Journal of Hydrogen Energy, 2013, 38(23), 9800.
[19] Reilly J J, Holtz A, Wiswall Jr R H. Review of Scientific Instruments, 1971, 42(10), 1485.
[20] Nagasako N, Fukumoto A, Miwa K. Physical Review B, 2002, 66(15), 155106.
[21] Li H. Study on hydrogen storage alloys applied in high-pressure hydrogen storage vessel and metal hydride compressor. Master's Thesis, Zhejiang University, China, 2010(in Chinese).
李慧. 用于氢化物复合储氢器和高压氢化物压缩器的储氢合金研究. 硕士学位论文, 浙江大学, 2010.
[22] Zhou C. Alloying substitution tuning the high-pressure hrdrogen storage thermodynamic properties of ZrFe2-based alloys. Master's Thesis, South China University of Technology, China, 2019(in Chinese).
周超. 合金化对ZrFe2基合金的高压储氢热力学性能调控. 硕士学位论文, 华南理工大学, 2019.
[23] Hu Z L. Hydrogen storage materials, Chemical Industry Press, China, 2002,pp.226(in Chinese).
胡子龙. 贮氢材料, 化学工业出版社, 2002,pp.226.
[24] Wang X H, Liu H, Li H. International Journal of Hydrogen Energy, 2011, 36(15), 9079.
[25] Wang X H, Chen R, Zhang Y, et al. Journal of Alloys and Compounds, 2006, 420(1-2), 322.
[26] Wang X H, Chen R, Chen C, et al. Journal of Alloys and Compounds, 2006, 425(1-2), 291.
[27] Wang X H, Chen R, Zhang Y, et al. Materials Letters, 2007, 61(4-5), 1101.
[28] Wang X H, Bei Y Y, Song X C, et al. International Journal of Hydrogen Energy, 2007, 32(16), 4011.
[29] Guo X, Wang S, Liu X, et al. Rare Metals, 2011, 30(3), 227.
[30] Yartys V A, Lototskyy M, Linkov V, et al. Applied Physics A: Materials Science and Processing, 2016, 122(4), 415.
[31] Nomura K, Ishido Y, Ono S. Energy Conversion, 1979, 19(1), 49.
[32] Bhuiya M M H, Lee C Y, Hwang T, et al. International Journal of Hydrogen Energy, 2014, 39(24), 12924.
[33] Lototskyy M, Davids M W, Swanepoel D, et al. International Journal of Hydrogen Energy, 2020, 45(8), 5415.
[34] Northrup C J M, Heckes A A. Journal of the Less Common Metals, 1980, 74(2), 419.
[35] Nomura K, Akiba E, Ono S. Journal of the Less-Common Metals, 1983, 89(2), 551.
[36] Au M, Wang Q. Journal of Alloys and Compounds, 1993, 201(1-2), 115.
[37] Da Silva E P. International Journal of Hydrogen Energy, 1993, 18(4), 307.
[38] Shmalko Y F, Ivanovsky A I, Lototsky M V, et al. International Journal of Hydrogen Energy, 1999, 24(7), 645.
[39] Shmalko Y F, Ivanovsky A I, Lototsky M V, et al. International Journal of Hydrogen Energy, 1999, 24(7), 649.
[40] Vanhanen J P, Hagstrm M T, Lund P D. International Journal of Hydrogen Energy, 1999, 24(5), 441.
[41] Golubkov A, Grishechkin S, Yukhimchuk A. International Journal of Hydrogen Energy, 2001, 26(5), 465.
[42] Muthukumar P, Maiya M P, Murthy S S. International Journal of Hydrogen Energy, 2005, 30(8), 879.
[43] Laurencelle F, Dehouche Z, Goyette J. Journal of Alloys and Compounds, 2006, 424(1-2), 266.
[44] Laurencelle F, Dehouche Z, Goyette J, et al. International Journal of Hydrogen Energy, 2006, 31(6), 762.
[45] Pearson D, Bowman R, Prina M, et al. Journal of Alloys and Compounds, 2007, 446-447, 718.
[46] Yang M. Research on metal hydride compressor which output hydrogen with pressure up to 35 MPa. Master's Thesis, Shanghai Jiao Tong University, China, 2009(in Chinese).
阳明. 35 MPa金属氢化物氢气热压缩机研究. 硕士学位论文, 上海交通大学, 2009.
[47] Lototsky M, Halldors H, Klochko Y, et al. In: ICHMS' 2009 XI International Conference. Yalta-Crimea-Ukraine, 2009, pp. 298.
[48] Cieslik J, Kula P, Filipek S M. Journal of Alloys and Compounds, 2009, 480(2), 612.
[49] Laurencelle F, Dehouche Z, Morin F, et al. Journal of Alloys and Compounds, 2009, 475(1-2), 810.
[50] Popeneciu G, Almasan V, Coldea I, et al. Journal of Physics: Conference Series, 2009, 182, 012054.
[51] Li H, Wang X, Dong Z, et al. Journal of Alloys and Compounds, 2010, 502(2), 503.
[52] Cieslik J, Kula P, Sato R. Journal of Alloys and Compounds, 2011, 509(9), 3972.
[53] Bhuiya M M H, Lee C Y, Hopkins R, et al. In: Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. USA, 2011, pp. 745.
[54] Bocharnikov M, Yanenko Y, Tarasov B. ISJAEE, 2012, 12(116), 18.
[55] Lototskyy M, Klochko Y, Linkov V, et al. Energy Procedia, 2012, 29, 347.
[56] Hu X C. Study on two stage compressor based on metal hydrides. Master's Thesis, Shanghai Jiao Tong University, China, 2012(in Chinese).
胡晓晨. 基于金属氢化物的两级氢气压缩机特性研究. 硕士学位论文, 上海交通大学, 2012.
[57] Hu X C, Qi Z G, Yang M, et al. Journal of Shanghai Jiaotong University (Science), 2012, 17(1), 53.
[58] Odysseos M, De Rango P, Christodoulou C N, et al. Journal of Alloys and Compounds, 2013, 580, S268.
[59] Koultoukis E D, Makridis S S, Fruchart D, et al. Solid State Phenomena, 2013, 194, 249.
[60] Sekhar B S, Muthukumar P. Journal of Energy Engineering, 2015, 141(4), 04014049.
[61] Karagiorgis G, Christodoulou C N, Von Storch H, et al. International Journal of Hydrogen Energy, 2017, 42(17), 12364.
[62] Galvis E A R, Leardini F, Ares J R, et al. International Journal of Hydrogen Energy, 2018, 43(13), 6666.
[63] Sharma V K, Anil Kumar E. Materials Today: Proceedings, 2018, 5(11), 23218.
[64] Gkanas E I, Christodoulou C N, Tzamalis G, et al. Renewable Energy, 2020, 147, 164.
[65] Sdanghi G, Nicolas V, Mozet K, et al. Carbon, 2020, 161, 466.
[66] Gupta S, Sharma V K. International Journal of Energy Research, 2020,45(4),5710
[67] Gupta S, Sharma V K. International Journal of Hydrogen Energy, 2021, 46(1), 1056.
[68] Goodell P D. Journal of the Less Common Metals, 1984, 99(1), 1.
[69] Park J M, Lee J Y. Materials Research Bulletin, 1987, 22(4), 455.
[70] Shen C C, Perng T P. Journal of Alloys and Compounds, 2005, 392(1), 187.
[71] Cheng H H, Yang H G, Li S L, et al. Journal of Alloys and Compounds, 2008, 453(1-2), 448.
[72] Liu J, Li K, Cheng H, et al. International Journal of Hydrogen Energy, 2017, 42(39), 24904.
[73] Boser O, Lehrfeld D. In: 26th Power Sources Symposium. NJ, 1975, pp. 3.
[74] Busch G, Schlapbach L, Seiler A. In: Hydrides for Energy Storage. Norway, 1978, pp. 293.
[75] Dantzer P, Meunier F. Materials Science Forum, 1988, 31, 1.
[76] Diaz H, Percheron-Guégan A, Achard J C, et al. International Journal of Hydrogen Energy, 1979, 4(5), 445.
[77] Wang X H, Chen R, Zhang Y, et al. Materials Letters, 2007, 61(4), 1101.
[78] Huston E L, Sandrock G D. Journal of the Less Common Metals, 1980, 74(2), 435.
[79] Zhu Z, Zhu S, Zhao X, et al. Materials Chemistry and Physics, 2019, 236, 121725.
[80] Johnson J R, Reilly J J. Inorganic Chemistry, 1978, 17(11), 3103.
[81] Johnson J R. Journal of the Less Common Metals, 1980, 73(2), 345.
[82] Johnson J, Reilly J, Reidinger F, et al. Journal of the Less Common Metals, 1982, 88(1), 107.
[83] Murray J. Bulletin of Alloy Phase Diagrams, 1981, 2(2), 174.
[84] Huang T Z. Research on hydrogen storage characteristics and phase composition of TiCr base alloys. Ph.D. Thesis, Shanghai Institute of Mic-rosystem and Information Technology Chinese Academy of Sciences, China, 2005 (in Chinese).21030081-21030081-
黄太仲. TiCr基合金的储氢性能及相结构研究. 博士学位论文, 中国科学院研究生院上海微系统与信息技术研究所, 2005.
[85] Klyamkin S N, Kovriga A Y, Verbetsky V N. International Journal of Hydrogen Energy, 1999, 24(2), 149.
[86] Huang T Z, Wu Z, Yu X B. Chinese Journal of Rare Metals, 2004, 28(4), 744(in Chinese).
黄太仲, 吴铸, 余学斌, 等. 稀有金属, 2004, 28(4), 744.
[87] Kandavel M, Bhat V, Rougier A, et al. International Tournal of Hydrogen Energy, 2008, 33(14), 3754.
[88] Li W, Wu E, Ma P, et al. International Journal of Energy Research, 2013, 37(7), 686.
[89] Matsunaga T, Kon M, Washio K, et al. International Journal of Hydrogen Energy, 2009, 34(3), 1458.
[90] Cao Z, Ouyang L, Wang H, et al. International Journal of Hydrogen Energy, 2015, 40(6), 2717.
[91] Li S, Wang S M, Sheng P, et al. Chinese Journal of Rare Metals, 2019, 43(7), 754(in Chinese).
李硕, 王树茂, 盛鹏, 等. 稀有金属, 2019, 43(7), 754.
[92] Dos Santos D, Bououdina M, Fruchart D. Journal of Alloys and Compounds, 2002, 340(1-2), 101.
[93] Dehouche Z, Savard M, Laurencelle F, et al. Journal of Alloys and Compounds, 2005, 400(1-2), 276.
[94] Kojima Y, Kawai Y, Towata S I, et al. Journal of Alloys and Compounds, 2006, 419(1-2), 256.
[95] Chen Z, Xiao X, Chen L, et al. International Journal of Hydrogen Energy, 2013, 38(29), 12803.
[96] Chen Z, Xiao X, Chen L, et al. Journal of Alloys and Compounds, 2014, 585, 307.
[97] Li J, Jiang X, Li G, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15087.
[98] Li J, Jiang X, Li Z, et al. International Journal of Energy Research, 2019, 43(11), 5759.
[99] Ge H W, Wang X H, Zhang Y, et al. Journal of Functional Materails, 2009, 40(3), 420(in Chinese).
葛红卫, 王新华, 张琰, 等. 功能材料, 2009, 40(3), 420.
[100] Yao Z, Liu L, Xiao X, et al. Journal of Alloys and Compounds, 2018, 731, 524.
[101] Li J, Guo Y, Jiang X, et al. Renewable Energy, 2020, 153, 1140.
[102] Yu X. International Journal of Hydrogen Energy, 2004, 29(13), 1377.
[103] Yu X B, Feng S L, Wu Z, et al. Journal of Alloys and Compounds, 2005, 393(1-2), 128.
[104] Liu L, Chen L, Xiao X, et al. Journal of Alloys and Compounds 2015, 636, 117.
[105] Liu L X. Study on the improvement of hydrogen storage performance of the Ti-Cr based alloys with high desorption pressure. Master's Thesis, Zhejiang University, China, 2015(in Chinese).
刘朗夏. Ti-Cr基高坪台压储氢合金的改性研究. 硕士学位论文, 浙江大学, 2015.
[106] Pickering L, Reed D, Bevan A I, et al. Journal of Alloys and Compounds, 2015, 645(S1), S400.
[107] Zotov T, Movlaev E, Mitrokhin S, et al. Journal of Alloys and Compounds, 2008, 459(1-2), 220.
[108] Jacob I, Bereznitsky M. Journal of Alloys and Compounds, 2002, 336(1-2), L1.
[109] Zotov T A, Sivov R B, Movlaev E A, et al. Journal of Alloys and Compounds, 2011, 509, S839.
[110] Corgnale C, Sulic M. Metals, 2018, 8(6), 469.
[1] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[2] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[3] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[4] 董小平, 陈亚方, 苏建文, 高腾远, 马玉蕊, 李旭. 储氢合金中氢致非晶化的研究进展[J]. 材料导报, 2020, 34(15): 15110-15115.
[5] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[6] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[7] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed