Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15110-15115    https://doi.org/10.11896/cldb.19050189
  金属及金属基复合材料 |
储氢合金中氢致非晶化的研究进展
董小平1,2,3, 陈亚方1,3, 苏建文1,2, 高腾远1,2, 马玉蕊1,3, 李旭1,3
1 河北大学机械设计制造及其自动化系,保定 071002
2 河北省汽车制造质量教育社会实践基地,保定 071002
3 计量仪器与系统国家地方联合工程研究中心,保定 071002
Research Progress on Hydrogen-induced Amorphization in Hydrogen Storage Alloys
DONG Xiaoping1,2,3, CHEN Yafang1,3, SU Jianwen1,2, GAO Tengyuan1,2, MA Yurui1,3, LI Xu1,3
1 Faculty of Mechanical Design and Manufacture and Automation, Hebei University, Baoding 071002, China
2 Special Practice Base of Automobile Manufacturing Quality Education, Baoding 071002, China
3 National & Local Joint Engineering Research Center of Metrology Instrument and System, Baoding 071002, China
下载:  全 文 ( PDF ) ( 3671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 储氢合金被认为是一种良好的储氢介质,其循环过程中的高吸放氢量更是学者们的研究重点。但储氢合金中的储氢容量不可避免会发生衰减,其衰减机理主要有:合金颗粒粉化、电化学腐蚀与氧化以及氢致非晶化(HIA)。其中,HIA发生于含Lave相的AB2型合金氢化物或Lave相为子单元的AB3~3.8型稀土镍系合金氢化物中。
影响HIA发生的因素主要有氢浓度、氢压力、温度、循环次数、物相类型。当氢浓度较低时,合金吸氢发生部分HIA;随着氢浓度的增加,氢化物发生HIA程度严重。HIA发生与氢压、温度的临界值有关,高于临界值时,HIA现象严重,低于临界值时,非晶与晶态氢化物共存。随着循环次数的增加,HIA现象严重,这直接降低了合金的放氢效率。
有研究者指出,可通过调整物相改善合金的吸放氢性能。采用Mg、Pr、Sm和Co、Mn、Cu、Fe、Al分别部分替代RENi2(RE=稀土)合金中RE和Ni,虽然形成的合金吸氢时仍会发生HIA,但其吸放氢性能得到显著改善。这是因为经调整的合金由单一的AB2型Laves相转变为AB2型Laves相和CaCu5型AB5相混合物相,AB2相吸氢时会发生HIA,而AB5相则始终为晶态,不发生HIA。随着循环次数的增加,Fe、Mn、Si等元素部分替代Ni后合金发生HIA的速率不同。AB2或含AB2子单元的物相吸氢发生HIA由易到难的顺序为(La, Mg)Ni2> (La, Mg)Ni3> (La, Mg)2Ni7> (La, Mg)5Ni19。为了延缓或抑制HIA的发生,可以从适量合金元素替代、增大AB5结构层比例或含量、合金氢化物的再结晶等角度进行研究。
本文归纳了AB2型或含AB2相子单元的合金吸氢发生HIA的研究进展,分别对发生HIA的必要条件、影响因素、现象与原因等进行了介绍,提出了HIA的延缓措施并展望了其应用前景,以期为研制出长寿命、高容量的储氢合金提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董小平
陈亚方
苏建文
高腾远
马玉蕊
李旭
关键词:  储氢合金  金属氢化物  AB2结构单元  氢致非晶化    
Abstract: Hydrogen storage alloys are considered to be a kind of good hydrogen storage medium, and their high hydrogen absorption and desorption capacity during cycling is the focus of research. However, their capacity degradation is unavoidable. The main degradation mechanisms are alloy particle pulverization, electrochemical corrosion and oxidation, and hydrogen-induced amorphization (HIA), in which HIA occurs in the AB2 type alloy hydride containing Laves phase or AB3-3.8 type rare earth nickel alloy hydrides containing Lave phase subunits.
The factors affecting the occurrence of HIA are mainly hydrogen concentration, hydrogen pressure, temperature, number of cycles, and phase type. When the hydrogen concentration is low,HIA occurs in a part of alloy hydride after hydrogen absorption. The degree of HIA increases with the increase of hydrogen concentration. Whether the HIA occurs is completely related to the critical value of hydrogen pressure and temperature. When the value is over the critical value, HIA phenomenon is getting severe, when the value is lower than the critical value, the crystals coexist with the crystalline hydride. As the increase of cycling number, the HIA phenomenon is getting severe, which directly reduces the hydrogen desorption efficiency of the alloy.
Phase tuning has been proved that can improve the hydrogen absorption and desorption properties of the alloy. Mg, Pr, Sm and Co, Mn, Cu, Fe and Al are applied to partly replace RE and Ni in the RENi2 (RE=rare earth) alloy, respectively. HIA inevitably occurs when the formed alloys absorb hydrogen, nevertheless, their hydrogen absorption and desorption properties of the alloy have been improved. The analyzed results show that after partial substitution of elements, the alloy phase transforms from a single AB2 type structure to the coexistence phases of AB2 type Laves phase and CaCu5 type AB5 phase. HIA occurs after hydrogen absorptionin AB2 phase, while AB5 phase is always crystalline. With the increase of cycling numbers, the HIA rate of the alloy is different when Ni is partly replaced by Fe, Mn and Si. For the phases containing AB2 unit or AB2 subunit, the sequence of HIA occurrence from easy to difficult is (La, Mg)Ni2> (La, Mg)Ni3> (La, Mg)2Ni7> (La, Mg)5Ni19. In order to delay or inhibit HIA, appropriate replacement of alloy elements, increasing the proportion or content of AB5 structural layer and recrystallization of alloy hydride may be investigated.
In this paper, the research progress of HIA during hydrogen absorption is summarized in the alloy containing AB2 unit or AB2 subunit. The necessary conditions, influencing factors, phenomena and causes for HIA occurrence are introduced respectively. The delay measures of HIA are put forward and their prospects are forecasted, aiming to provide references for the development of hydrogen storage alloys with long life and high capacity.
Key words:  hydrogen storage alloy    metal hydride    AB2 structure unit    hydrogen-induced amorphization
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TG139.1  
基金资助: 国家自然科学基金面上项目(51371094);河北省自然科学基金(E2018201235);河北大学2018年实验室开放项目(sy201811)
通讯作者:  dxp0316@163.com   
作者简介:  董小平,河北大学机械设计制造及其自动化系副教授、硕士研究生导师,博士。主要从事储氢材料的成分设计与性能调控研究,主持和完成了国家自然科学基金、河北省自然科学基金等研究项目十余项。在国内外期刊上发表储氢材料专题研究论文50余篇,发明专利2项,其中30 篇被SCI/EI 收录。2015年获河北大学第六届青年教师课堂教学大赛三等奖;评为《材料热处理学报》优秀审稿专家;曾任第六届中国机械工程学会热处理分会青年委员会委员,2018年聘为内蒙古纳米技术标准化委员会(SAM/TC委员)。
引用本文:    
董小平, 陈亚方, 苏建文, 高腾远, 马玉蕊, 李旭. 储氢合金中氢致非晶化的研究进展[J]. 材料导报, 2020, 34(15): 15110-15115.
DONG Xiaoping, CHEN Yafang, SU Jianwen, GAO Tengyuan, MA Yurui, LI Xu. Research Progress on Hydrogen-induced Amorphization in Hydrogen Storage Alloys. Materials Reports, 2020, 34(15): 15110-15115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050189  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15110
1 Mudita N, Rita K. International Journal of Hydrogen Energy, 2018, 43, 12168.2 Abdalla M A, Shahzad H, Ozzan B N, et al.Energy Convers and Ma-nage, 2018, 165, 602.3 Wei T Y, Lim K L, Tseng Y S, et al.Renewable & Sustainable Energy Reviews, 2017, 79, 1122.4 Eftekhari A, Fang B Z.International Journal of Hydrogen Energy, 2017, 42, 25143.5 Emmanuel S, Emmanuel Z, George T, et al.Renew Energy, 2018, 127, 850.6 Zhang F, Zhao P C, Niu M, et al. International Journal of Hydrogen Energy, 2016, 41, 14535.7 Kaveh E, Ryoko U, Yuji I, et al.Acta Materialia, 2018, 149, 88.8 Mahvash A, Rohit M, Pratibha S.International Journal of Hydrogen Energy, 2017, 42, 30661.9 Boris P T, Mikhail S B, Yurii B Y, et al. International Journal of Hydrogen Energy, 2018, 43, 4415.10 Hassen J, Luc A, Walid D, et al. Journal of Solid State Chemistry, 2018, 260, 73.11 Lan Z Q, Zeng K, Wei B, et al.International Journal of Hydrogen Energy, 2017, 42, 12458.12 Lydia P, Mykyahlo V L, Moegamat W D, et al.Mater Today: Procee-dings, 2018, 5, 10470.13 Peng L, Jacques H.Energy, 2017, 138, 375.14 Nesrine M, Ismahen B K, Houcine D, et al.Chinese Journal of Physics, 2018, 56, 449.15 Zhang T B, Wu T D, Xue X Y, et al. Renew Energy, 2017, 103, 786.16 Zhang H W, Zheng X Y, Tian X, et al.Progress in Natural Science-Materials International, 2017, 27, 50.17 Wang C C, Zhou Y T, Yang C C, et al.Chemical Engineering Journal, 2018, 352, 325.18 Ouyang L Z, Huang J L, Wang H, et al.Materials Chemistry and Physics, 2017, 200, 164.19 Masahiko O, Ayaka I, Yasuhiro S, et al.International Journal of Hydrogen Energy, 2012, 37, 10715.20 Liu J J, Zheng Z, Cheng H H, et al. Journal of Alloys and Compounds, 2018,731, 172.21 Naruki E, Shin-ichi I, Keiichi T, et al.Catalysis Today, 2011, 164, 293.22 Zhou W H, Ma Z W, Wu C L, et al.International Journal of Hydrogen Energy, 2016, 41, 1801.23 Hye R P, Young J K, Myoung Y S.Materials Research Bulletin, 2018, 99, 23. 24 Liu Y F, Cao YH, Huang L, et al. Journal of Alloys and Compounds, 2011, 509, 675.25 Priyanka M, Mukesh J, Ramvir S, et al.Journal of Materials Science & Technology, 2018, 7, 173.26 Yong K, Koch J, Yasuoka S, et al.Journal of Power Source, 2015, 277, 433. 27 Yeh XL, Samwer K, Johnson WL. Applied Physics Letter, 1983, 42, 242.28 Dong F Y, Luo L S, Su Y Q, et al.Rare Metal Materials and Enginee-ring, 2013, 42, 1536.29 Li X G.Hydrogen and hydrogen energy (first edition),Machinery Industry Press, China, 2012 (in Chinese).李星国. 氢与氢能(第1版), 机械工业出版社, 2012.30 Aoki K, Masumoto T.Journal of Alloys and Compounds,1995, 231, 20.31 Aoki K, Li X G, Masumoto T.Acta Metallurgica et Materialia, 1992, 40, 1717.32 Chung U I, Kim Y G, Lee J Y.Philosophical Magazine B, 1991, 63, 1119.33 Zhang J, Zhou G Y, Chen G R,et al. Journal of Alloys and Compounds, 2008, 56, 5388.34 Masahiko K, Hidehiro O.Journal of Phase Equilibria, 2011, 22, 418.35 Li H W, Ishikawa K, Aoki K.Journal of Alloys and Compounds, 2005, 388, 49.36 Li H W, Ishikawa K, Aoki K.Materials Science Forum, 2004, 45, 3050.37 Aoki K.Materials Science and Engineering: A, 2011, 304-306, 45.38 Li P, Zhai F Q, Wan Q, et al.RSC Advances, 2014, 4, 27207.39 Bououdina M, Soubeyroux J L, et al.Journal of Alloys and Compounds, 2001, 327, 185.40 Park I, Terashita N, Abe E.Journal of Alloys and Compounds, 2013, 580, S81.41 Zhai T T, Yang T, Yuan Z M, et al.Journal of Alloys and Compounds, 2015, 639, 15.42 Zhai T T, Yang T, Yuan Z M, et al.International Journal of Hydrogen Energy, 2014, 39, 14282.43 Zhang Q A, Yang D Q. Journal of Alloys and Compounds,2017, 711, 312.44 Yang T, Yuan Z M, Bu W G, et al.Materials and Design, 2016, 93, 46.45 Yang T, Zhai T T, Yuan Z M, et al.Journal of Alloys and Compounds, 2014, 617, 29.46 Wang W, Chen Y G, Tao M D, et al.Journal of Rare Earths, 2010, 28, 443.47 Wang W, Chen Y G, Wu C L.Rare Metal Materials and Engineering, 2012, 40, 2080.48 Young K, Ouchi T, Shen H, et al.International Journal of Hydrogen Energy, 2015, 40, 8941.49 Herbst J F.Journal of Alloys and Compounds, 2002, 337, 99.50 Wang J, Yang F, Fan T, et al.Physics B, 2011, 406, 1330.51 Li Y M, Duan B Y, Liu Z C, et al.Acta Metallurgica Sinica (English Letters), 2018, 31, 897.52 Li Y M, Zhang H W, Zhang Y H, et al.Rare Metal, 2017, 36, 101.53 Li Y M, Zhang Y H, Ren H P. Acta Metallurgica Sinica (English Letters), 2018, 31, 723.54 Denys R V, Riabov B, Yartys V A, et al.Journal of Alloys and Compounds, 2007, 446-447, 166.55 Matylda N G, Bjørn C H, Klaus Y.Journal of Solid-State Chemistry, 2012, 186, 9.56 Ma Z W, Zhu D, Wu C L, et al. Journal of Alloys and Compounds, 2015, 620, 149.57 Zhai T T. Structure, hydrogen storage properties and degradation mechanism of capacity of La-Mg-Ni system AB2 type alloys.Ph.D. Thesis, Northeastern University, China, 2015 (in Chinese).翟亭亭. La-Mg-Ni系AB2型贮氢合金的结构、贮氢性能及容量衰退机理研究. 博士学位论文, 东北大学, 2015.
[1] 沈华亚, 陈法国, 韩毅, 杨明明, 李国栋, 梁润成. 金属氢化物中子屏蔽应用研究现状[J]. 材料导报, 2019, 33(Z2): 484-487.
[2] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[3] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed