Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 21010018-8    https://doi.org/10.11896/cldb.21010018
  高分子与聚合物基复合材料 |
考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测
熊小双1,2,3, 张梓豪2, 李巧敏2, 余联庆2,3
1 武汉纺织大学湖北省数字化纺织装备重点实验室,武汉 430200
2 武汉纺织大学机械工程与自动化学院,武汉 430200
3 武汉纺织大学湖北省功能纤维加工及检测工程技术研究中心,武汉 430200
Prediction of Elastic Constants of Short Flax Fiber Reinforced Composites Considering the Interfacial Property
XIONG Xiaoshuang1,2,3, ZHANG Zihao2, LI Qiaomin2, YU Lianqing2,3
1 Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China
2 School of Mechanical Engineering & Automation, Wuhan Textile University, Wuhan 430200, China
3 Hubei Engineering Technology Research Center of Functional Fiber Processing and Testing, Wuhan Textile University, Wuhan 430200, China
下载:  全 文 ( PDF ) ( 4685KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然纤维复合材料中纤维与基体间界面性能较差且波动性较大,将对复合材料最终力学性能产生显著影响。基于内聚力模型,建立单向短切亚麻纤维增强复合材料(SFFRC)有限元模型,获得不同界面刚度的单向SFFRC的弹性常数。通过层合板理论计算纤维随机分布的SFFRC的弹性常数,发现计算结果与拉伸实验结果相吻合。在此基础上,研究了界面刚度K0、纤维长径比ζ和纤维取向分布的形状因子λ对复合材料弹性常数的影响规律,并提出一种修正的混杂(ROM)公式来预测纤维随机分布的SFFRC的拉伸模量。结果表明,K0的降低会同时导致复合材料的纵向拉伸模量E1、横向拉伸模量E2和纵向剪切模量G12显著降低;随着ζ的增大,E1E2G12逐渐增大;而λ的变化将导致纤维取向角变化,从而对E1E2G12产生不同的影响。当K0≤10 GPa/mm时,修正的ROM公式预测结果与拉伸实验结果相吻合,这说明修正的ROM公式能有效预测界面刚度较差的SFFRC的拉伸模量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊小双
张梓豪
李巧敏
余联庆
关键词:  短切麻纤维  复合材料  随机分布  界面刚度  弹性常数    
Abstract: The interfacial properties between fiber and matrix in natural fiber reinforced composites are poor and fluctuate greatly, which will have a signi-ficant influence on the final mechanical properties of the composites. In the paper, finite element models of unidirectional short flax fiber reinforced composites (SFFRC) using cohesive zone model were established to calculate the elastic constants of the unidirectional SFFRC with different interfacial stiffness. And then, the elastic constants of SFFRC with fiber random distribution were calculated by using the laminate plate theory, which are in good agreement with the tensile test results. On this basis, the effects of the interfacial stiffness (K0), the aspect ratio of fiber (ζ) and the factor of fiber distribution (λ) on the elastic constants of SFFRC were studied, and then a modified “rule-of-mixtures” (ROM) model for predicting the tensile modulus of SFFRC with randomly distributed fibers were proposed. The results show that the longitudinal tensile modulus (E1), transverse tensile modulus (E2) and longitudinal shear modulus (G12) of the composites decrease significantly with the decrease of K0 and increase gradually with the increase of ζ. The change of λ results in the change of fiber orientation angle and has different influence on the E1, E2 and G12 of the composites. The results of tensile modulus from the modified ROM model show good agreements with that from the tensile experiment when K0≤10 GPa/mm, indicating that the modified ROM model can effectively predict the tensile modulus of SFFRC with poor interface stiffness.
Key words:  short flax fiber    composite    random distribution    interfacial stiffness    elastic constant
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51805181);湖北省自然科学基金(2020CFB389)
通讯作者:  yulq@wtu.edu.cn   
作者简介:  熊小双,武汉纺织大学讲师,2008年9月至2019年6月,在武汉理工大学获得材料成型及控制工程专业工学学士学位和材料科学与工程专业工学博士学位,2019年7月入职武汉纺织大学机械工程与自动化学院。主要研究方向为天然纤维复合材料制备及其应用,主持湖北省自然科学基金青年项目,湖北省重点实验室开放基金项目等。
余联庆,武汉纺织大学教授,硕士研究生导师,现任武汉纺织大学机械工程与自动化学院院长,中国机械工程学会高级会员、湖北省机械工程学会理事。2007年博士毕业于华中科技大学机械科学与工程学院,2008年至2012年在清华大学机械工程学院从事博士后研究工作。主要研究方向:现代纺织装备及新材料,主持国家自然科学面上项目,中国博士后科学基金项目等。
引用本文:    
熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
XIONG Xiaoshuang, ZHANG Zihao, LI Qiaomin, YU Lianqing. Prediction of Elastic Constants of Short Flax Fiber Reinforced Composites Considering the Interfacial Property. Materials Reports, 2022, 36(1): 21010018-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010018  或          http://www.mater-rep.com/CN/Y2022/V36/I1/21010018
[1] Zeng J C, Lu B, Zhang L W. Natural fiber composites. Chemical Industrial Press, China, 2005(in Chinese).
曾竟成, 鲁博, 张林文. 天然纤维复合材料. 化学工业出版社, 2005.
[2] Faruk O, Bledzki A K, Fink H, et al. Macromolecular Materials and Engineering, 2014, 299(1), 9.
[3] Xiong X S, Shen S Z, Hua L, et al. Journal of Reinforced Plastics and Composites, 2018, 37(9), 617.
[4] Kern W T, Kim W, Argento A, et al. Materials & Design, 2016, 106, 285.
[5] Sliseris J, Yan L B, Kasal B. Composites Part B: Engineering, 2016, 89, 143.
[6] Modniks J, Andersons J. Computational Materials Science,2010,50(2), 595.
[7] Modniks J, Andersons J. Composites Part B: Engineering, 2013, 54, 188.
[8] Hine P J, Lusti H R, Gusev A A. Composites Science and Technology, 2002, 62, 1445.
[9] Yan L B, Chouw N, Jayaraman K. Composites Part B: Engineering, 2014, 56, 296.
[10] Espinach F X, Granda L A, Tarrés Q, et al. Composites Part B: Engineering, 2014, 56, 296.
[11] Zhang D H, Milanovic N R, Zhang Y H, et al. Composites Part B: Engineering, 2014, 60, 186.
[12] Chen Z R, Yan W Y. Mechanics of Materials, 2015, 91, 119.
[13] Xiong X S, Shen Z S, Hua L, et al. Journal of Composite Materials, 2018, 52(27), 3701.
[14] Cox H L. British Journal of Applied Physics, 1952, 3(3), 72.
[15] Gu H B, Miao M H. Journal of Composite Materials, 2013, 48(24), 2993.
[1] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[2] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[3] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[4] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[5] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[6] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[7] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[8] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[9] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[10] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[13] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[14] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[15] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed