Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20100143-6    https://doi.org/10.11896/cldb.20100143
  高分子与聚合物基复合材料 |
紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响
王志航1, 许金余1,2, 刘高杰1, 朱从进1
1 空军工程大学航空工程学院,西安 710038
2 西北工业大学力学与土木建筑学院,西安 710072
Effect of UV Aging on Shear Properties and Pore Structure of Polymer-based Composites
WANG Zhihang1, XU Jinyu1,2, LIU Gaojie1, ZHU Congjin1
1 School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China
2 College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 3548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以苯丙乳液和醋酸乙烯-乙烯共聚乳液(VAE乳液)为有机组分制备的聚合物基复合材料为研究对象,采用实验室人工加速紫外老化的方法,对未老化和紫外老化1 d、7 d、15 d、30 d后的复合材料进行剪切试验和压汞测孔试验。通过测试复合材料的剪切强度、剪切峰值应变、剪切断裂伸长率、剪切韧度、剪切峰前韧度和孔隙结构,研究了紫外老化对复合材料剪切性能和孔隙结构的影响规律。结果表明:紫外老化能提高复合材料的剪切强度、剪切韧度和剪切峰前韧度,增强复合材料的剪切性能。随着紫外老化时间的延长,复合材料的剪切强度不断增大,紫外老化30 d后,复合材料的剪切强度提高了70.25%。复合材料的剪切韧度和剪切峰前韧度随着紫外老化时间的延长先增大后减小;紫外老化7 d后,剪切韧度提高了34.06%;紫外老化15 d后,剪切峰前韧度提高了101.68%。紫外老化在一定范围内提高了复合材料的剪切峰值应变,紫外老化15 d后,复合材料的剪切峰值应变提高了18.83%。由于光氧反应、水泥的二次水化反应和交联固化反应,经紫外老化后,复合材料的剪切断裂伸长率不断下降。紫外老化对复合材料的孔隙结构有较大影响,紫外老化7 d后,聚合物基复合材料的总孔隙量减少了18.00%。随着紫外老化时间的延长,复合材料的孔径分布逐渐向大孔径偏移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志航
许金余
刘高杰
朱从进
关键词:  苯丙乳液  VAE乳液  水泥  复合材料  紫外老化  剪切性能  孔隙结构    
Abstract: Polymer-based composites prepared with styrene-acrylic emulsion and VAE emulsion as organic components are the research objects. Using the method of artificially accelerated ultraviolet(UV) aging in the laboratory, the shear test and mercury intrusion test were carried out on the composites that were not aged and after 1 d(day), 7 d, 15 d, and 30 d UV aging. By testing the composites shear strength, shear peak strain, shear elongation at break, shear toughness, shear pre-peak toughness and pore structure parameters, the influence of ultraviolet aging on the shear properties and pore structure of composite materials was studied. The results show that UV aging can improve the shear strength, shear toughness and shear pre-peak toughness of composites, and enhanced shear performance of composite. With the prolongation of UV aging time, the shear strength of the composite material continues to increase; after 30 d of UV aging, the shear strength of the composites increased by 70.25%. With the prolongation of UV aging time, the shear toughness and shear pre-peak toughness first increase and then decrease; after 7 d of UV aging, the shear toughness increased by 34.06%; after 15 d of UV aging, the shear pre-peak toughness increased by 101.68%. UV aging increased the peak shear strain of the composites within a certain range, after 15 d of UV aging, the peak shear strain of the composites increased by 18.83%. Due to the photo-oxygen reaction, the secondary hydration reaction of cement and the cross-linking and curing reaction, after UV aging, the shear elongation at break of composites continues to decrease. UV aging has a greater impact on the pore structure of the composites. After 7 d of UV aging, the total pore volume of the polymer matrix composites was reduced by 18.00%. With the extension of the UV aging time, the pore size distribution of composites gradually shifted to larger pore sizes.
Key words:  styrene-acrylic emulsion    VAE emulsion    cement    composite materials    ultraviolet aging    shear properties    pore structure
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51208507; 51378497)
通讯作者:  xujinyuafeu@163.com20100143-1   
作者简介:  王志航,空军工程大学交通运输工程专业博士研究生。主要从事机场道面材料和建筑材料研究,已发表学术论文10余篇,其中SCI收录3篇,申报国家发明专利2项,实用新型专利3项。许金余,空军工程大学教授,博士研究生导师。1994年9月获同济大学结构工程专业博士学位。先后完主持军队重点科研项目10余项,获军队科技进步奖6项。重点研究防护工程与建筑材料。在国内外重要期刊发表文章100多篇,申报发明专利10余项。
引用本文:    
王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
WANG Zhihang, XU Jinyu, LIU Gaojie, ZHU Congjin. Effect of UV Aging on Shear Properties and Pore Structure of Polymer-based Composites. Materials Reports, 2022, 36(2): 20100143-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100143  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20100143
1 Rashid K , Wang Y , Ueda T .Composite Structures, 2019, 215(5), 14.
2 Jiang Y J , Li L , Wang H S , et al.Advanced Materials Research, 2015, 1129, 263.
3 Wang D Y, Fei W S.Advanced Materials Research, 2013, 671-674(2), 1179.
4 Banjo A A, Temidayo E O.Engineering Structures and Technologies,2017, 9(3), 126.
5 Zhang Xianmin, Liu Xiaolan, Zhang Ziwen.Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9), 4(in Chinese).
张献民, 刘小兰, 张子文. 北京航空航天大学学报, 2018, 44(9), 4.
6 Bai E L, Liu G J, Xu J Y.Ceramics Silikaty, 2020, 64(1), 92.
7 Wang Jiening, Zhao Xiaopeng.China Safety Science Journal, 2016, 26(5), 47(in Chinese).
王洁宁, 赵晓鹏. 中国安全科学学报, 2016, 26(5), 47.
8 Liu Z G, Xu F M, Cao G B.Applied Mechanics & Materials, 2015, 716-717, 307.
9 Ma Zhengjun, Ying Hong, Fu Qin, et al.Journal of Building Materials, 2013, 16(2), 349(in Chinese).
马正军, 英红, 付琴, 等.建筑材料学报, 2013, 16(2), 349.
10 Yuan Jie, Liu Wenbo. Highway Transportation Science and Technology, 2016, 33(9),7(in Chinese).
袁捷, 刘文博. 公路交通科技, 2016, 33(9), 7.
11 Yassene A A M, Ismail M R, Afify M S.Journal of Vinyl and Additive Technology, 2020, 26(2), 144.
12 Liu Hongming, Fei Yiwei, Sun Shian, et al.Chemical Industry Times, 2016, 30(12),31(in Chinese).
刘鸿铭, 费逸伟, 孙世安, 等. 化工时刊, 2016, 30(12), 31.
13 Asad M, Dhanasekar M, Zahra T, et al.Construction and Building Materials, 2019, 224(10), 863.
14 Bai E, Liu G, Xu J, et al. Materials, 2020,13(9), 2143.
15 Nguyen Manh-Thuong, Wang Z M, Rod Kenton A, et al.ACS Applied Materials & Interfaces, 2018, 10(3), 3011.
16 Choi J Y, Joo M K, Lho B C.International Journal of Concrete Structures and Materials, 2016, 10, 235.
17 Tsukagoshi M, Kokami Y, Tanaka K.Journal of Structural and Constrction Engineering, 2010, 75(652), 1057.
18 Ohama Y.Cement and Concrete Composites, 1998, 25(20), 189.
19 Ma Y, Tian Y, Li Z J.Jorunal of Materials Civil Engineering, 2011, 23(10), 1412.
20 Plank J, Gretz M.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330(2-3), 227.
21 Melichar T, Byd Ovsky J Í, Keprdová Á. Advanced Materials Research, 2014, 1000, 81.
22 Sokonowska J J, Woyciechowski P, Adamczewski G.Advanced Materials Research, 2013, 687, 144.
23 Soufi A, Mahieux P Y, AÏt-Mokhtar A, et al.Materials & Structures, 2015, 49(1-2), 383.
24 Wang Zhihang, Xu Jinyu, Meng Xin, et al. Construction and Building Materials, 2021, 286, 122976.
25 Wang Zhihang, Xu Jinyu, Bai Erlei, et al.New Chemical Materials, 2021, 49(S1), 161 (in Chinese).
王志航, 许金余, 白二雷, 等. 化工新型材料, 2021, 49(S1), 161.
26 Wang Zhihang, Bai Erlei, Xu Jinyu, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2416 (in Chinese).
王志航, 白二雷, 许金余, 等. 中南大学学报(自然科学版), 2021, 52(7), 2416.
27 Wang Zhihang, Xu Jinyu, Meng Xin, et al. Journal of Renewable Materials, 2021,9(6), 1157.
28 Wang Zhihang, Xu Jinyu, Bai Erlei, et al. Modern Chemical Industry, 2021, 41(S1), 173 (in Chinese).
王志航, 许金余, 白二雷, 等. 现代化工, 2021, 41(S1), 173.
[1] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[2] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[3] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[4] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[5] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[6] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[7] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[8] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[9] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[10] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[11] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[12] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[13] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[14] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[15] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed