Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20090252-7    https://doi.org/10.11896/cldb.20090252
  无机非金属及其复合材料 |
桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性
陆由付1, 王朝辉2, 王学成1, 樊振通2, 肖绪荡2
1 山东高速集团有限公司,济南 250098
2 长安大学公路学院,西安 710064
Environmental Adaptability of Epoxy Grouting Materials for Micro Cracks in Cast-in-place Cement Concrete for Bridge Deck
LU Youfu1, WANG Chaohui2, WANG Xuecheng1, FAN Zhentong2, XIAO Xudang2
1 Shandong Hi-Speed Group Co., Ltd, Jinan 250098, China
2 School of Highway, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 3422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明确混凝土细微裂缝用环氧灌浆材料在极端环境条件下的性能变化情况,采用环氧树脂E-54、聚醚胺D230固化剂与三种活性稀释剂(AD-Ⅰ、AD-Ⅱ和AD-Ⅲ)制备了四种环氧灌浆材料(EP、EP/AD-Ⅰ、EP/AD-Ⅱ和EP/AD-Ⅲ),以冲击强度为评价指标对比分析了四种环氧灌浆材料常温与低温柔韧性,基于环氧灌浆材料拉伸性能与界面粘结强度,探究了EP、EP/AD-Ⅰ、EP/AD-Ⅱ和EP/AD-Ⅲ灌浆材料在高温冲击、温变以及冻融循环工况下的力学性能演变规律。结果表明,与EP灌浆材料相比,活性稀释剂弱化了环氧灌浆材料低温柔韧性、耐高温冲击性、耐温变性以及抗冻性。其中AD-Ⅲ活性稀释剂对环氧灌浆材料常温韧性改善效果最佳,但其-10 ℃冲击韧性比EP灌浆材料低31.4%;经高温冲击、温变处理以及冻融循环后四种环氧灌浆材料的拉伸性能与粘结强度均出现了不同程度的衰退,高温冲击下四种环氧灌浆材料粘结强度损失较大,降幅高达14.67%,但粘结强度仍高于2.5 MPa;温变工况下环氧灌浆材料粘结强度降幅均在3.5%以内,环氧灌浆材料拉伸性能受冻融循环工况的影响较为显著,但其拉伸强度仍大于40 MPa,断裂伸长率仍高于4.0%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆由付
王朝辉
王学成
樊振通
肖绪荡
关键词:  道路材料  环氧灌浆材料  细微裂缝  冲击韧性  环境适应性  现浇水泥混凝土    
Abstract: In order to determine the performance change of epoxy grouting materials for concrete micro cracks under extreme environmental conditions,four kinds of epoxy grouting materials (EP, EP/AD-Ⅰ, EP/AD-Ⅱ and EP/AD-Ⅲ) were prepared by using epoxy resin E-54, polyether amine D230 curing agent and three active diluents (AD-Ⅰ, AD-Ⅱ and AD-Ⅲ). The impact strength was used as the evaluation index to compare and analyze the flexibility of four kinds of epoxy grouting materials at room temperature and low temperature. Based on the tensile properties and interfacial bond strength of epoxy grouting materials, the evolution law of mechanical properties of different grouting materials under high temperature impact, temperature change and freeze-thaw cycles was explored. The results show that compared with pure epoxy grouting material, the reactive diluent weakens the low temperature flexibility, high temperature impact resistance, temperature denaturation resistance and frost resistance of epoxy grouting materials. Among them, AD-Ⅲ active diluent has the best effect on improving the toughness of epoxy grouting material at room temperature, but its impact toughness at -10 ℃ is 31.4% lower than that of pure epoxy grouting material. After high temperature impact, tempe-rature change treatment and freeze-thaw cycle, the tensile properties and bond strength of four kinds of epoxy grouting materials have different degrees of decline. Under high temperature impact, the bond strength of the four kinds of epoxy grouting materials lost greatly, with a decrease of 14.67%, but the bond strength was still higher than 2.5 MPa. During temperature change conditions, the bond strength of epoxy grouting materials decreases by 3.5%. The tensile properties of epoxy grouting materials are significantly affected by freeze-thaw cycles, but the tensile strength is still greater than 40 MPa, and the elongation at break is still higher than 4.0%.
Key words:  road materials    epoxy grouting material    micro cracks    impact toughness    environmental adaptability    in-suit cement concrete
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  U418  
  TQ323.5  
基金资助: 山东省交通运输厅科技计划项目(2018B50);陕西省重点研发计划项目(2021GY-206)
通讯作者:  wchh0205@chd.edu.cn   
作者简介:  陆由付,硕士,2015年6月毕业于重庆交通大学交通运输学院,主要从事道路结构与材料方面的研究。
王朝辉,长安大学公路学院教授、博士研究生导师,交通运输科技青年英才,陕西省青年科技标兵,美国俄克拉荷马州立大学访问学者,担任国际稀浆罩面协会、中国公路建设行业协会等专家委员及《中国公路学报》等国内外多个学术期刊编委。2008年7月毕业于长安大学,获工学博士学位。同年加入长安大学公路学院道路研究所工作至今,主要从事绿色功能型道路新材料与新技术的开发及应用领域的研究。以第一作者/通讯作者发表学术论文130余篇,其中SCI/EI 收录90余篇;获国家授权发明专利80余项。
引用本文:    
陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
LU Youfu, WANG Chaohui, WANG Xuecheng, FAN Zhentong, XIAO Xudang. Environmental Adaptability of Epoxy Grouting Materials for Micro Cracks in Cast-in-place Cement Concrete for Bridge Deck. Materials Reports, 2022, 36(1): 20090252-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090252  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20090252
[1] Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 1.
[2] Wang C H, Shu C, Han B, et al. Journal of Chang'an University (Na-tural Science Edition), 2020, 40(1), 1(in Chinese).
王朝辉, 舒诚, 韩冰, 等. 长安大学学报(自然科学版), 2020, 40(1), 1.
[3] Chen Q, Wang C H, Fu H, et al. Materials Reports, 2021, 35(16), 16712(in Chinese).
陈谦, 王朝辉, 傅豪, 等. 材料导报, 2021, 35(16), 16172.
[4] Chi Y, Yin J. Journal of Railway Science and Engineering, 2018, 15(9), 2327(in Chinese).
池漪, 尹健. 铁道科学与工程学报, 2018, 15(9), 2327.
[5] Xiao X D. Study on preparation and properties of grouting material with low viscosity for the micro cracks of the cast-in-situ concrete of pavement on deck bridge. Master's Thesis, Chang' an University, China, 2020(in Chinese).
肖绪荡. 现浇混凝土桥面铺装细微裂缝低粘灌浆材料制备及性能研究. 硕士学位论文, 长安大学, 2020.
[6] Ozeren O E, Ozkul M H.Construction and Building Materials, 2018, 158,369.
[7] Petrova T V, Solodilov V I, Kabantseva V E,et al. In: TMU Internatio-nal Symposium on New Quantum Phases Emerging from Novel Crystal Structure. Tokyo, Japan, 2019, pp.012070.
[8] Khalina M, Beheshty M H, Salimi A. Polymer Bulletin, 2019, 76(8), 3905.
[9] Li Y, Deng J F, Yu S Y, et al.Polymer Bulletin, 2019 (11), 33(in Chinese).
李瑜, 邓金飞, 喻世轶, 等. 高分子通报, 2019 (11), 33.
[10] Ye S. China Adhesives, 2017, 26 (4), 37(in Chinese).
叶晟. 中国胶粘剂, 2017, 26(4), 37.
[11] Bai T, Guo A R, Li R J, et al.Chinese Journal of Applied Chemistry, 2016, 33 (12), 1401(in Chinese).
白天, 郭安儒, 李瑞杰, 等. 应用化学, 2016, 33(12), 1401.
[12] Cui H S, Wu Y Z, Meng J H.China Plastics Industry, 2015, 43 (6), 57(in Chinese).
崔宏生, 吴有智, 孟军虎. 塑料工业, 2015, 43(6), 57.
[13] Peng B, Yu Y B, Shan Y M, et al.Journal of Hunan University (Natural Sciences), 2013, 40(9), 25(in Chinese).
彭勃, 余益斌, 单远铭, 等. 湖南大学学报(自然科学版), 2013, 40(9), 25.
[14] Vanerek J, Smak M, Kusak I, et al.Materiali in Tehnologije, 2017, 51(6), 889.
[15] Yamazaki D, Iwanami M, Isa M.Journal of Advanced Concrete Technology, 2020, 18(8), 463.
[16] Zhang P, Hu Y, Pang Y Y, et al.Construction and Building Materials, 2020, 259, 119799.
[17] Chen Q, Wang S S, Wang C H, et al.Journal of Materials in Civil Engineering, 2021,33(5),04021079.
[18] Chen Q, Wang C H, Fu H, et al. China Journal of Highway and Transport, 2021, 34(7), 236(in Chinese).
陈谦, 王朝辉, 傅豪, 等. 中国公路学报, 2021, 34(7), 236.
[19] Gao Z D, Hong B, Gao J Y, et al.Thermosetting Resin, 2018, 33(6), 47(in Chinese).
高振东, 洪彬, 高建业, 等. 热固性树脂, 2018, 33(6), 47.
[20] Xu Q B, Gao Y. Journal of China & Foreign Highway, 2008 (4), 49(in Chinese).
徐邱彬, 高英. 中外公路, 2008 (4), 49.
[21] Ma Z J, Tan Z M, Qian C.China Journal of Highway and Transport, 2014, 27 (9), 9(in Chinese).
马正军, 谈至明, 钱晨. 中国公路学报, 2014, 27(4),9.
[22] Chen Q, Wang C H, Fan Z T, et al. Materials Reports B:Research Papers, 2019, 33(5), 1659(in Chinese).
陈谦, 王朝辉, 樊振通, 等. 材料导报:研究篇, 2019, 33(5), 1659.
[1] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[2] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[3] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[4] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[5] 陈谦, 王朝辉, 陈渊召, 李振霞, 郭滕滕, 陈海军. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104.
[6] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[7] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[8] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[9] 张正一, 韩晓霞, 王朝辉, 孙晓龙. 路用降温涂层在模拟污染工况下的降温性能[J]. CLDB, 2018, 32(8): 1373-1379.
[10] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[11] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[12] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
[13] 张磊, 问鹏辉, 王朝辉, 狄升贯, 殷卫永. 道路非开挖注浆加固补强材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 98-105.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed