Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20090353-10    https://doi.org/10.11896/cldb.20090353
  无机非金属及其复合材料 |
NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究
张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞
西南科技大学材料科学与工程学院,四川 绵阳 621010
Study on Immobilization of Simulated Radionuclide Sr2+/Sm3+ by NZP-type Phosphate Ceramics
ZHANG Xue, WANG Jin, LUO Ping, LIU Die, ZHAN Lei, WEI Yufeng, WANG Junxia
School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 5439KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以Sr2+和Sm3+分别模拟二价裂变核素和三价次锕系核素,利用NaZr2(PO4)3(NZP)结构丰富的离子取代性同时固化多种模拟放射性核素,采用微波烧结工艺在1 100 ℃保温2 h制备了固溶Sr、Sm的NZP型磷酸盐陶瓷固化体(Na,Sr)(Zr,Sm)2(PO4)3,系统地研究了Sr/Sm掺入量对固化体的物相组成、微观形貌、表观密度以及维氏硬度的影响规律。研究结果表明:Sr能够完全固溶进入NZP结构的Na晶格位形成Sr0.5-Zr2(PO4)3(SrZP),而Sm难以进入NZP的Zr晶格位,掺入的Sm主要以SmPO4独居石的形式存在。固溶Sr/Sm的陶瓷固化体结构致密,晶粒大小均匀,且SmPO4独居石的存在不会降低固化体的致密性和力学性能;随着Sm掺入量的增加,样品的表观密度和维氏硬度逐渐增大,最大值分别为3.61 g·cm-3和679 MPa。同时,PCT浸出结果表明所制备的样品具有良好的化学稳定性,各元素的归一化浸出率均处于10-3~10-7 g·m-2·d-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪
王进
罗萍
刘蝶
詹磊
魏玉锋
王军霞
关键词:  磷酸锆钠(NZP)  固化  放射性核素  独居石  微波烧结    
Abstract: In this work, Sr2+ and Sm3+ were chosen as surrogates for the fission nuclide and minor actinides, respectively. NaZr2(PO4)3 (hereinafter referred to as NZP) was employed to simultaneously incorporate the multiple simulated radionuclides due to its abundant ionic substitution, and a series of Sr2+ and Sm3+ incorporated NZP-type (Na, Sr)(Zr, Sm)2(PO4)3 ceramics waste forms were prepared by microwave sintering at 1 100 ℃ holding for 2 h. The effects of Sr/Sm content on the phase composition, micromorphology, apparent density, and Vickers hardness of the samples were systematically investigated. It was shown that Sr was incorporated in the Na lattice of NZP structure to form Sr0.5Zr2(PO4)3 (SrZP), while Sm was difficult to enter Zr lattice site of NZP, but mainly existed in the form of SmPO4 monazite phase. The Sr/Sm-incorporated ceramics waste forms exhibited an excellent dense structure with uniform grain size, and the existence of SmPO4 monazite would not lower its densification and physical properties. The apparent density and Vickers hardness of the samples increased gradually with the increase of Sm content, which were up to 3.61 g·cm-3 and 679 MPa, respectively. Moreover, it was indicated that the as-prepared samples exhibited great chemical stability according to PCT test results, and the normalized leaching rate of each element was in the order of 10-3—10-7 g·m-2·d-1.
Key words:  sodium zirconium phosphate (NZP)    immobilization    radioactive nuclide    monazite    microwave sintering
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TQ174  
基金资助: 国家自然科学基金青年基金(11705153)
通讯作者:  wjunxia2002@163.com   
作者简介:  张雪,西南科技大学材料科学与工程学院硕士研究生,师从王军霞副教授。主要从事核废物陶瓷固化材料的研究。
王军霞,西南科技大学副教授,硕士研究生导师。主要从事功能陶瓷、核废物陶瓷固化材料的研究。
引用本文:    
张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞. NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究[J]. 材料导报, 2022, 36(1): 20090353-10.
ZHANG Xue, WANG Jin, LUO Ping, LIU Die, ZHAN Lei, WEI Yufeng, WANG Junxia. Study on Immobilization of Simulated Radionuclide Sr2+/Sm3+ by NZP-type Phosphate Ceramics. Materials Reports, 2022, 36(1): 20090353-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090353  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20090353
[1] Sun X Z, Luo Z H. Nuclear Safety, 2016, 15(2),13(in Chinese).
孙学智, 罗朝晖.核安全, 2016, 15(2),13.
[2] Shen Z Y. Radiation Protection Bulletin, 2002, 22(1),37(in Chinese).
沈珍瑶. 辐射防护通讯, 2002, 22(1),37.
[3] Wang X Q, Tuo X G, Zhou H. Journal of Nuclear and Radiochemistry, 2013, 35(3),180(in Chinese).
王孝强, 庹先国, 周慧.核化学与放射化学, 2013, 35(3),180.
[4] Liu J, Wang F, Liao Q, et al. Journal of Nuclear Materials, 2019, 513,251.
[5] Zhong C B, Liu X D, Luo T A, et al. China Ceramics, 2013, 49(4),4(in Chinese).
钟昌贝, 刘晓东, 罗太安, 等.中国陶瓷, 2013, 49(4),4.
[6] Osmanlioglu A E. Journal of Hazardous Materials, 2006, 137(1),332.
[7] Ewing R C, Weber W J, Lian J. Journal of Applied Physics, 2004, 95,5949.
[8] Zhao X F, Teng Y C, Wu L, et al. Journal of Nuclear Materials, 2015, 466,187.
[9] Ewing R C, Lutze W, Weber W J. Journal of Materials Research, 1995, 10(2),243.
[10] Itoh K, Nakayama S. Journal of Materials Science, 2002, 37(8),1701.
[11] Ordóez-Regil E, Contreras-Ramírez A, Fernández-Valverde S M, et al. Journal of Nuclear Materials, 2013, 443(1-3),417.
[12] Ivanov-Schitz A K, Bykov A B. Solid State Ionics,1997,100(1-2),153.
[13] Roy R, Vance E R, Alamo J. Materials Research Bulletin,1982,17(5),585.
[14] Orlova A I, Kitaev D B, Kemenov D V, et al. Journal of Solid State Chemistry, 2006, 179 (10),3101.
[15] Bohre A, Awasthi K, Shrivastava O P. Radiochemistry, 2013, 55 (4),442.
[16] Luo P, Wang J X, Wang J, et al. Journal of the Australian Ceramic Society, 2019, 55(2),549.
[17] Wang J X, Luo P, Wang J, et al. Ceramics International, 2020, 46(3),3023.
[18] ASTM C1285-14, Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics, the Product Consistency Test (PCT). West Conshohocken, PA, USA 2014.
[19] Lyu Y J. Study on monazite phosphate glass-ceramics as waste form for simulated α-HLLW. Master's Thesis, University of Geosciences, China 2008(in Chinese).
吕彦杰. 模拟α-高放废液独居石磷酸盐玻璃陶瓷固化体的研究.硕士学位论文, 中国地质大学, 2008.
[20] Yang H, Teng Y C, Ren X T, et al. Journal of Nuclear Materials, 2014, 444(1-3),39.
[21] Wang B, Chen Q S, Liu X D, et al. Guangzhou Chemical Industry, 2012, 40(24),52.
[22] Frost R L, Xi Y, Scholz R, et al. Transition Metal Chemistry, 2012, 37(8),777.
[23] Tarte P, Rulmont A, Merckaert-Ansay C. Spectrochimica Acta Part A: Molecular Spectroscopy, 1986, 42(9),1009.
[24] Kurazhkovskaya V S, Bykov D M, Borovikova E Y, et al. Vibrational Spectroscopy, 2010, 52(2),137.
[25] Heuser J, Bukaemskiy A A, Neumeier S, et al. Progress in Nuclear Energy, 2014, 72,149.
[26] Xue L H, Yuan R Z. Journal of Wuhan University of Technology, 2003, 25(10),1(in Chinese).
薛理辉, 袁润章.武汉理工大学学报, 2003, 25(10),1.
[27] Bohre A, Shrivastava O P. Journal of Nuclear Materials, 2013, 433(1-3),486.
[28] Bevilacqua A M, Bernasconi N B M D, Russo D O, et al. Journal of Nuclear Materials, 1996, 229,187.
[29] Audero M A, Bevilacqua A M, Bernasconi N B M D, et al. Journal of Nuclear Materials, 1995, 223(2),151.
[30] Zhang R Z, Yang J, Yan D K, et al. Materials Science Forum, 2011, 704-705,625.
[1] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[2] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[3] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[4] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[5] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[6] 王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
[7] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
[8] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[9] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[10] 王瑞虎, 杨军, 邹德宁, 胡鹏, 向炜成. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 35(23): 23153-23161.
[11] 罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
[12] 蹇守卫, 赵红晨, 王亮, 李宝栋, 高文斌, 黄伟超. 重度铜污染土壤制备轻集料的固化机理研究[J]. 材料导报, 2021, 35(18): 18104-18108.
[13] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[14] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[15] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed