Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23153-23161    https://doi.org/10.11896/cldb.20060130
  金属与金属基复合材料 |
金属材料微波烧结技术的研究进展
王瑞虎1, 杨军1,2, 邹德宁1,2, 胡鹏3, 向炜成4
1 西安建筑科技大学冶金工程学院,西安 710055
2 西安建筑科技大学陕西省黄金与资源重点实验室,西安 710055
3 北京工业大学材料科学与工程学院,北京 100124
4 中国石油集团东北炼化工程有限公司沈阳分公司,沈阳 110167
Recent Progress on Microwave Sintering of Metal Materials
WANG Ruihu1, YANG Jun1,2, ZOU Dening1,2, HU Peng3, XIANG Weicheng4
1 School of Metallurgical Engineering,Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Key Laboratory of Gold and Resources, Xi'an University of Architecture and Technology, Xi'an 710055, China
3 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
4 CNPC Northeast Refining and Chemical Co., Ltd., Shenyang 110167, China
下载:  全 文 ( PDF ) ( 17178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属及其合金、复合材料的快速烧结一直都是金属材料领域的难题。微波烧结技术因具有体积加热、选择性加热以及非热效应等特性,相比于传统烧结工艺能够显著降低烧结温度、缩短烧结周期,在制备结构均匀、晶粒细小、综合力学性能优异的金属材料方面拥有巨大的潜力。本文介绍了金属材料微波烧结过程中热效应(介电损耗、电导损耗与磁损耗)与非热效应(放电效应与磁效应)对烧结制品的影响,综述了近几年国内外微波烧结金属及其合金、复合材料方面的主要研究进展,对微波烧结过程中存在的问题进行了分析,并对后续金属材料微波烧结技术的研究方向进行了展望,以期为后续研究者提供有力参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞虎
杨军
邹德宁
胡鹏
向炜成
关键词:  微波烧结  金属材料  力学性能  热效应  非热效应  热失控    
Abstract: The rapid sintering of metals and their alloys and composite materials has always been a problem in the field of metal materials. Microwave sintering technology has the characteristics of volume heating, selective heating and non-thermal effect. Compared with the traditional sintering process, it has great potential in the field of metal materials with fine and uniform grain structure and excellent comprehensive mechanical properties. This article describes the influence of the thermal effects (dielectric, conductance and magnetic loss) and the non-thermal effects (discharge and magnetic effect) on sintered samples during the microwave sintering process. The major progress on the microwave sintering of metals, alloys and their composite materials were reviewed. The problems faced in the current research are analyzed, and the research direction of microwave sintering technology in the future is prospected, which provides a powerful reference for follow-up researchers.
Key words:  microwave sintering    metal material    mechanical property    thermal effect    non-thermal effect    thermal runaway
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TF124  
基金资助: 国家自然科学基金(51774226;U1460104)
通讯作者:  yj-yangjun@xauat.edu.cn;pengh@bjut.edu.cn   
作者简介:  王瑞虎,西安建筑科技大学冶金工程学院硕士研究生,目前主要研究领域为难熔金属的微波烧结工艺研究。
杨军,西安建筑科技大学教授,博士研究生导师,2007年毕业于西安交通大学材料学专业,获博士学位。主要从事连铸新技术及先进材料领域的教学与科研工作。在国内外科技刊物上发表论文100余篇,获授权专利2项。
胡鹏,北京工业大学教授,博士研究生导师,2000年毕业于北京化工大学应用化学系获学士学位。2008年毕业于中国中科院过程所(IPE)获博士学位。于2012—2013年赴新加坡南洋理工大学进行学术交流。在中科院过程所工作17年后于2017年进入北京工业大学就职。主要从事等离子体增强化学反应过程的研究,旨在为大规模合成、结构控制与纳米功能材料的先进应用提供新的策略。发表SCI论文50余篇。
引用本文:    
王瑞虎, 杨军, 邹德宁, 胡鹏, 向炜成. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 35(23): 23153-23161.
WANG Ruihu, YANG Jun, ZOU Dening, HU Peng, XIANG Weicheng. Recent Progress on Microwave Sintering of Metal Materials. Materials Reports, 2021, 35(23): 23153-23161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060130  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23153
1 Sun J, Wang W, Yue Q Y, et al. Applied Energy, 2016, 175, 141.
2 Mishra P, Upadhyaya A, Sethi G. Metallurgical and Materials Transactions B, 2006, 37(5), 839.
3 Haque K E. International Journal of Mineral Processing, 1999, 57(1), 1.
4 Jones D A, Lelyveld T P, Mavrofidis S D, et al. Resources, Conservation & Recycling, 2002, 34(2), 75.
5 Kasin, Ivar K. E. U. patent, EP1850977, 2015.
6 Jin Y, Xie H K. Tool Engineering, 2005, 39(1), 19 (in Chinese).
晋勇, 谢华锟. 工具技术, 2005, 39(1), 19.
7 Ma J L, Tong X F, Peng H. New Material Industry, 2001, 11(6), 30 (in Chinese).
马金龙, 童学锋, 彭虎. 新材料产业, 2001, 11(6), 30.
8 Osepchuk J M. IEEE Transactions on Microwave Theory and Techniques, 2003, 32(9), 1200.
9 Wilhelm K E E. US patent, 2094602, 1937.
10 Tinga W R, Voss W A G. Microwave powder engineering, Academic Press, USA, 1968, pp. 141.
11 Roy R, Agrawal D, Cheng J, et al. Nature, 1999, 399(6750), 304.
12 Zhuang T Y, Zhang J L, Wang F, et al. Powder Metallurgy Technology, 2019, 37(5), 392(in Chinese).
庄天涯, 张际亮, 王霏, 等.粉末冶金技术, 2019, 37(5), 392.
13 Tinga W R, Eke K. The Journal of Microwave Power and Electromagnetic Energy: a Publication of the International Microwave Power Institute, 2012, 46(4), 192.
14 Khaled D E, Novas N, Gazquez J A, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 1.
15 Mishra P, Upadhyaya A, Sethi G. Metallurgical and Materials Transactions B, 2006, 37(5), 839.
16 Fan J L, Huang B Y, Liu J, et al. Powder Metallurgy Industry, 2004, 14(1), 29 (in Chinese).
范景莲, 黄伯云, 刘军, 等. 粉末冶金工业, 2004, 14(1), 29.
17 Mondal A, Upadhyaya A, Agrawal D. International Journal of Refractory Metals and Hard Materials, 2010, 28(5), 597.
18 Xu L. Research on properties of microwave heating metal copper powder and infiltration sintering tungsten copper composite. Ph.D. Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
许磊. 微波加热金属铜粉及熔渗烧结钨铜复合材料特性研究. 博士学位论文, 昆明理工大学, 2016.
19 Wang W, Liu Z, Sun J, et al. AIChE Journal, 2012, 58(12), 386.
20 Feng Y K, Wang W L, Wang Y C, et al. Science of the Total Environment, 2018, 645, 788.
21 Zhou Y L, Wang W L, Sun J, et al. Applied Thermal Engineering, 2017, 125, 393.
22 Xiao Y, Xu F, Dong B, et al. Metals, 2017, 7(2), 47.
23 Peng Y D. Studies on microwave heating mechanism and sintering beha-vior of powder metallurgy materials. Ph.D. Thesis, Central South University, China, 2011 (in Chinese).
彭元东. 微波加热机制及粉末冶金材料烧结特性研究. 博士学位论文, 中南大学, 2011.
24 Liu W, Tian M C, Li J H. 中国专利, CN107144130B, 2019.
25 Ren C, Fang Z, Zhang H, et al. International Journal of Refractory Metals and Hard Materials, 2016, 61, 273.
26 Kim Y, Lee S, Noh J, et al. International Journal of Refractory Metals and Hard Materials, 2013, 41, 442.
27 Hu P, Chen T Y, Li X J,et al. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104969.
28 Liu W S, Xu Z G, Ma Y Z. Materials Reports A: Review papers, 2010, 24(5), 33 (in Chinese).
刘文胜, 徐志刚, 马运柱. 材料导报:综述篇, 2010, 24(5), 33.
29 Mondal A, Upadhyaya A, Agrawal D. International Journal of Refractory Metals and Hard Materials, 2010, 28(5), 597.
30 Wang K, Wang X P, Liu R, et al. Journal of Nuclear Materials, 2012, 431(1-3), 206.
31 Chhillar P, Agrawal D, Adair J.H. Powder Metallurgy, 2013, 51(2), 181.
32 Duan B H, Zhang Z, Wang D Z, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(8), 1705.
33 Li X Q. Processing technology, Beijing University of Aeronautics and Astronautics Press, China, 2003, pp. 273.
34 Wang M C, Zhao Z W, Yang D Q, et al. Materials Reports, 2015, 29(S1), 26(in Chinese).
王明超, 赵志伟, 杨德青, 等. 材料导报, 2015, 29(S1), 26.
35 Bao R. Studies on microwave sintering of WC-Co hard matels. Ph.D. Thesis, Central South University, China, 2013(in Chinese).
鲍瑞. WC-Co硬质合金的微波烧结制备研究. 博士学位论文, 中南大学, 2013.
36 Li M, Gong M F, Zhang C Y, et al. Materials Reports A: Review papers, 2020, 34(15), 15138 (in Chinese).
李萌, 弓满锋, 张程煜, 等. 材料导报:综述篇, 2020, 34(15), 15138.
37 Rumman R, Chuan L, Jamie S, et al. Metals and Materials Internatio-nal, 2019, 26(6), 1.
38 Rumman R, Chuan L, Jamie S, et al. International Journal of Refractory Metals and Hard Materials, 2019, 81, 7.
39 Bao R, Yi J, Zhang H, et al. International Journal of Refractory Metals and Hard Materials, 2012, 32, 16.
40 Bao R, Guo S D, Yi J H, et al. The Chinese Journal of Nonferrous Me-tals, 2020,30(8), 1828 (in Chinese).
鲍瑞, 郭圣达, 易健宏, 等.中国有色金属学报, 2020, 30(8), 1828.
41 Tian Z H, Wu X B, Gao P P, et al. Cemented Carbide, 2019, 36(4), 313 (in Chinese).
田智豪, 伍小波, 高平平, 等. 硬质合金, 2019, 36(4), 313.
42 Gao L Y. Study on the technology and performance of microwave sintering Ti(C,N)-based cermet. Master's Thesis, Hunan University of Technology, China, 2014 (in Chinese).
高凌燕. 微波烧结Ti(C,N)基金属陶瓷的工艺及性能研究. 硕士学位论文, 湖南工业大学, 2014.
43 Ye J D, Yin Z B, Yuan J T, et al. International Journal of Applied Ceramic Technology, 2020, 17(2), 761.
44 Hu H P, Cheng Y, Yin Z B, et al. Ceramics International, 2015, 41(10), 1.
45 Monteverde F, Medri V, Bellosi A. Journal of the European Ceramic Society, 2002, 22(14-15). 2587.
46 Deng Y, Jiang X Q, Zhang Y H, et al. Materials Science & Engineering A, 2016, 675, 164.
47 Zhan B, Liu N, Jin Z B, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(5), 1096.
48 Xu Q Z, Ai X, Zhao J, et al. Materials Science & Engineering A, 2015, 628, 281.
49 Bellosi, Alida, Medri, et al. Journal of the American Ceramic Society, 2001, 84(11), 2669.
50 Yin Z B, Yan S Y, Xu W W, et al. Ceramics International, 2018, 44(1), 1034.
51 Lv D M, Zhou W P. China Tungsten Industry, 2009, 24(5), 107 (in Chinese).
吕大铭, 周武平. 中国钨业, 2009, 24(5), 107.
52 Zhang J J, Liu W S, Ma Y Z, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(11), 3088 (in Chinese).
张佳佳, 刘文胜, 马运柱, 等. 中国有色金属学报, 2012, 22(11), 3088.
53 Upadhyaya A, Tiwari S K, Mishra P. Scripta Materialia, 2007, 56(1), 5.
54 Ma Y Z, Zhang J J, Liu W S, et al. Rare Metal Materials and Enginee-ring, 2012, 41(9), 1680 (in Chinese).
马运柱, 张佳佳, 刘文胜, 等. 稀有金属材料与工程, 2012, 41(9), 1680.
55 Zhou C S, Yi J H, Zhang H Z. Transactions of Nonferrous Metals Society of China, 2012, 22(10), 2818 (in Chinese).
周承商, 易健宏, 张浩泽. 中国有色金属学报, 2012, 22(10), 2818.
56 Nie P, Kang X F, Wang M H. Journal of Shenyang Institute of Aeronautical Engineering, 2011, 28(3), 60 (in Chinese).
聂鹏, 康晓峰, 王明海. 沈阳航空航天大学学报, 2011, 28(3), 60.
57 Qin H Q, Lu A J, Lin F, et al. Superhard Material Engineering, 2016, 28(6), 6 (in Chinese).
秦海青, 卢安军, 林峰, 等. 超硬材料工程, 2016, 28(6), 6.
58 Shao W Z, Ivanov V, Zhen L, et al. Materials Letters, 2004, 58(1), 146.
59 Ye X L, Guo S H, Gao J Y, et al. Diamond and Abrasives Engineering, 2018, 38(1), 41 (in Chinese).
叶小磊, 郭胜惠, 高冀芸, 等. 金刚石与磨料磨具工程, 2018, 38(1), 41.
60 Hou M, Guo S H, Yang L, et al. Powder Technology, 2019, 356, 403.
61 Xiang B, Xie Z G, He Y H, et al. Diamond and Abrasives Engineering, 2007(2), 158 (in Chinese).
向波, 谢志刚, 贺跃辉,等. 金刚石与磨料磨具工程, 2007(2), 158.
62 Guo S H, Hu L T, Yang L, et al. Inorganic Chemicals Industry, 2020, 52 (12), 23(in Chinese).
郭胜惠,胡龙涛,杨黎,等. 无机盐工业, 2020, 52 (12), 23.
63 Liu W C. Research on microwave thermal runaway mechanisms based on SR-CT experiments. Ph.D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
刘文超. 金属微波热失控行为的同步辐射实验和热动力学原理研究. 博士学位论文, 中国科学技术大学, 2018.
64 Xiao Y, Xu F. In: Conference Record of the 2018 National Conference on Solid Mechanics. Harbin, 2018, pp. 202.
65 John S. Francis, Rishi R. Journal of the American Ceramic Society, 2012, 95(1), 138.
66 Ma J, Diehl J F, Johnson E J, et al. Journal of Applied Physics, 2007, 101(7), 153.
67 Charles M, Geuntak L, Tony Z, et al. Acta Materialia, 2018, 147, 24.
68 Mondal S, Durygin A, Drozd V, et al. Journal of the American Ceramic Society, 2020, 103(9), 4876.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed