Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6100-6106    https://doi.org/10.11896/cldb.20050034
  无机非金属及其复合材料 |
F1离子固化剂加固试验黄土机理及强度特性研究
李建东1,2, 王旭1,2, 张延杰1, 蒋代军1, 刘德仁1, 王景龙1, Steven3
1 兰州交通大学土木工程学院,兰州 730070
2 道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
3 泰勒斯玛特有限公司,中国香港 810002
A Mechanism Study of Trial Loess Reinforced by F1 Ionic Soil Stabilizer on Curing Mechanism and Strength Characteristics
LI Jiandong1,2, WANG Xu1,2, ZHANG Yanjie1, JIANG Daijun1, LIU Deren1, WANG Jinglong1, Steven3
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou 730070, China
3 Terra Smart Limited, Hong Kong 810002, China
下载:  全 文 ( PDF ) ( 5553KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究F1离子固化剂对黄土的加固效果和固化机理,利用不同掺量的F1离子固化剂加固试验黄土。从黏土颗粒表面化学入手,利用CBR试验、三轴压缩试验、SEM电镜扫描以及IPP6.0比表面/微孔隙分析软件,对F1离子固化剂加固试验黄土的CBR值、膨胀特性、强度参数和固化前后土体微观结构的变化规律进行了研究。结果表明:F1固化剂可减小土颗粒表面结合水膜的厚度,使土颗粒间的距离(或体积)减小、引力增大,在碾压时形成排列更加紧密、团聚体更大的层状堆叠结构,使得土体的孔隙面积百分比和形态分布分维数减小,土颗粒间的黏结强度、剪切强度、密实度和稳定性增强;在试验黄土中加入0.3 L/m3(最佳掺入比)的F1溶液后,其摩擦角和黏聚力分别增大了1.17倍和1.55倍;F1固化剂通过离子交换作用占据了黏土颗粒表面的阴离子点位,阻碍了其对水分子的吸附,大幅减小了黏土颗粒的膨胀变形;F1固化剂具有绿色环保、加固效果良好等优点,在黄土地区土体填筑工程中有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建东
王旭
张延杰
蒋代军
刘德仁
王景龙
Steven
关键词:  黄土  离子固化剂  固化机理    
Abstract: In order to study the reinforcement effect and curing mechanism of F1 ionic soil stabilizer on the loess, different mixing ratios of F1 ionic soil stabilizer were used to reinforce the trial loess. The CBR values, expansion properties, strength parameters and the variation law of soil microstructure before and after curing of loess reinforced by the F1 ionic soil stabilizer were investigated using CBR test, triaxial compression test, SEM scanning and IPP6.0 specific surface/micropore analysis software from the clay particle surface chemistry. The results show that F1 ionic soil stabilizer can reduce the thickness of bound water film on the surface of soil particles, reduce the distance (or volume) between soil particles, increase the gravitational force, and form a tighter arrangement and larger agglomerate laminated structure when crushed, thus reducing the percentage of pore area and morphological distribution dimension of soil particles, and increasing the adhesion strength, shear strength, compactness and stability between soil particles; after adding 0.3 L/m3 (optimum mixture ratio) of F1 ionic soil stabilizer into the trial loess, the friction angle and cohesion increased by 1.36 times and 2.47 times, respectively; F1 ionic soil stabilizer occupies the anion point on the surface of clay particles through ion exchange, which hinders the adsorption of water molecules and greatly reduces the swelling deformation; F1 ionic soil stabilizer has the advantages of green environment and good reinforcement effect, which has broad application prospects in loess filling projects.
Key words:  loess    ionic soil stabilizer    curing mechanism
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TU472  
基金资助: 国家自然科学基金项目(41662017;51868038);国家重点研发计划项目(2017YFB1201204)
通讯作者:  publicwang@163.com   
作者简介:  李建东,男,1992年11月生,兰州交通大学博士研究生,道理与铁道工程专业,主要从事黄土地区地基处理与基础工程的学习与应用研究。
王旭,兰州交通大学土木工程系教授,在西南交通大学获得工学学士、硕士与博士学位。主要从事土木工程教学、科研与管理工作,区域性土工理论与应用研究。已在国内外学术期刊发表学术论文80余篇,参编教材与专著2部,授权国家发明专利19项,相关研究成果获得省级科技进步奖6项,中国铁道学会科学技术奖3项。担任《路基工程》编委、担任铁道学会、铁道工程委员会、地质与路基专业委员会、全国湿陷性黄土委员会和地基基础委员会委员,全国桩基础工程学会、甘肃省岩石力学与工程常务与甘肃省土木建筑学会理事。
引用本文:    
李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
LI Jiandong, WANG Xu, ZHANG Yanjie, JIANG Daijun, LIU Deren, WANG Jinglong, Steven. A Mechanism Study of Trial Loess Reinforced by F1 Ionic Soil Stabilizer on Curing Mechanism and Strength Characteristics. Materials Reports, 2021, 35(6): 6100-6106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050034  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6100
1 Xie D Y. Chinese Journal of Geotechnical Engineering,2001,23(1),3(in Chinese).
谢定义.岩土工程学报,2001,23(1),3.
2 Sun J Z. Loess science, Hong Kong Archaeological Society, China,2005(in Chinese).
孙建中.黄土学,香港考古学会,2005.
3 Lu X S. Research on the experimental effect and mechanism of ionic soil stabilizer reinforcing Wuhan red clay. Master's Thesis, China University of Geosciences, China,2010(in Chinese).
卢雪松.离子土壤固化剂加固武汉红色黏土的试验效果及其机理研究.硕士学位论文,中国地质大学,2010.
4 Xiong H J, Lin T J, Li N, et al. Chemistry of geotechnical engineering, Science Press, China,2001(in Chinese).
熊厚金,林天健,李宁,等.岩土工程化学,科学出版社,2001.
5 Mi J F, Wang H, Liu J B, et al. Materials Reports,2017,31(S1),388(in Chinese).
米吉福,汪浩,刘晶冰,等.材料导报,2017,31(专辑29),388.
6 Wu X T, Xiang W, Wang Z H, et al. Journal of Engineering Geology,2018,26(5),1285(in Chinese).
吴雪婷,项伟,王臻华,等.工程地质学报,2018,26(5),1285.
7 You Q L, Qiu X, Yang Q,et al. China Journal of Highway and Transport,2019,32(5),64(in Chinese).
游庆龙,邱欣,杨青,等.中国公路学报,2019,32(5),64.
8 Zhou H L, Shen X D. Materials Reports A: Review Papers,2014,28(5),134(in Chinese).
周海龙,申向东.材料导报:综述篇,2014,28(5),134.
9 Liu Yuemei, Zhang Xingchang. Chinese Journal of Soil Science,2014,45(1),24.
刘月梅,张兴昌.土壤通报,2014,45(1),24.
10 Fang S, Huang X F, Zhang P C, et al. Materials Reports B: Research Papers,2017,31(11),135(in Chinese).
方晟,黄雪峰,张彭成,等.材料导报:研究篇,2017,31(11),135.
11 Zhang L P, Zhang X C, Sun Q. Science of Soil and Water Conservation,2009,7(4),60(in Chinese).
张丽萍,张兴昌,孙强.中国水土保持科学,2009,7(4),60.
12 Lei W, Xiang W. Journal of Yangtze River Scientific Research Institute,2014,31(5),47(in Chinese).
雷雯,项伟.长江科学院院报,2014,31(5),47.
13 Wang Y M, Jia J, Zhang L J, et al. Journal of South China University of Technology, Natural Science Edition,2002,30(9),96(in Chinese).
汪益敏,贾娟,张丽娟,等.华南理工大学学报,自然科学版,2002,30(9),96.
14 Wang Y M, Yang Z C, Chen W W, et al. Chinese Journal of Rock Mechanics and Engineering,2005,24(14),2554(in Chinese).
王银梅,杨重存,谌文武,等.岩石力学与工程学报,2005,24(14),2554.
15 Petry T M, Baja D. Transportation Research Record,2001,1757,43.
16 Peng M, Cun L T, Qiang C, et al. Agricultural Engineering and Agricultural Machinery,2015,16(2),384.
17 Zheng D M. Mechanical characteristics of soils treated with a liquid stabilizer. Master's Thesis, University of Alberta, Canada,2013.
18 Bhadriraju V. A laboratory study to address swell, shrink and strength characteristics of deep mixing treated expansive clays. Ph.D. Thesis, University of Texas at Arlington, USA,2005.
19 Moloisane R J, Visser A T. Journal of the South African Institution of Civil Engineering,2014,56(1),28.
20 Xiang W, Cui D S, Liu Q B, et al. Journal of Earth Science,2010,21(6),882.
21 Yang Q, Luo X H, Qiu X, et al. Journal of Highway and Transportation Research and Development,2015,32(11),33(in Chinese).
杨青,罗小花,邱欣,等.公路交通科技,2015,32(11),33.
22 Liu Q B, Xiang W, Cui D S. Chinese Journal of Geotechnical Enginee-ring,2012,34(10),1887(in Chinese).
刘清秉,项伟,崔德山.岩土工程学报,2012,34(10),1887.
23 Ministry of Communications of the People's Republic of China. JTG E40-2007, Test Methods of Soils for Highway Engineering, People's Communications Press, China,1993(in Chinese).
中华人民共和国交通部.JTG E40-2007.公路土工试验规程,北京人民交通出版社,1993.
24 Ministry of Communications of the People's Republic of China. JTG D30-2015, Specifications for Design of Highway Subgrades, People's Communications Press, China,1993(in Chinese).
中华人民共和国交通部.JTG D30-2015.公路路基设计规范,人民交通出版社,2015.
25 Moore C A, Donaldson C F. Geothchique,1995,1(45),105.
[1] 王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
[2] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[3] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[4] 同帜, 张健需, 孙小娟, 杨博文, 黄开佩. 基于天然黄土低温烧制的多孔管状陶瓷基体及其表征[J]. 材料导报, 2020, 34(12): 12050-12056.
[5] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed