Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12050-12056    https://doi.org/10.11896/cldb.19050137
  无机非金属及其复合材料 |
基于天然黄土低温烧制的多孔管状陶瓷基体及其表征
同帜, 张健需, 孙小娟, 杨博文, 黄开佩
西安工程大学环境与化学工程学院,西安 710048
Preparation and Characterization of Macroporous Tubular Ceramic Support Based on Natural Loess at Low Sintering Temperature
TONG Zhi, ZHANG Jianxu, SUN Xiaojuan, YANG Bowen, HUANG Kaipei
School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 10375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决陶瓷膜制备成本过高、不易烧结等问题,以天然黄土为骨料,通过固态粒子烧结法制备管状黄土基陶瓷支撑体。采用TG-DTG、SEM和XRD对支撑体的热稳定性、微观结构和晶相组成进行分析,并测定了样品的水通量、抗折强度、酸碱腐蚀率、孔隙率及孔径分布等性能指标。研究烧结温度、保温时间和造孔剂添加量对支撑体性能的影响,探求更为绿色的加工制造过程。结果表明:通过改变烧结温度及保温时间等参数能有效调节控制烧结过程中颗粒重排、晶相结合及孔道形成;支撑体晶相组成主要为石英、镁铝尖晶石和硅铝蓝晶石;烧结温度为1 030 ℃,保温2 h,添加 4%(质量分数)造孔剂的条件下制备的管状支撑体综合性能最优,此时支撑体的表面完整,晶粒结合稳定,且烧制过程中耗能低、无二次污染。对比同类研究,本实验烧成SiO2-黄土基陶瓷支撑体的中值孔径为2.676 μm 、孔隙率为(48±0.9)%、抗折强度为64.19 MPa,水通量为2 590.02 L·(m2·h·MPa)-1、酸碱腐蚀率为0.019/0.013,其性能优良且化学性能稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
同帜
张健需
孙小娟
杨博文
黄开佩
关键词:  黄土  支撑体  烧结制度  造孔剂  羧甲基纤维素    
Abstract: In order to solve the problem that the ceramic membrane preparation cost is too high and it is not easy to be sintered, the tubular loess-based ceramic membrane support with loess as aggregate was prepared by solid-state particle sintering method. The thermal stability, microstructure and crystal phase composition of the sample were analyzed by TG-DTG, SEM and XRD. The performance indexes such as flexural strength, water flux, acid-base corrosion rate, porosity and pore size distribution of the sample were measured. The effects of sintering temperature, holding time and the amount of pore former added on the performance of the support were investigated to explore a greener manufacturing process. The results show that the parameters such as sintering temperature and holding time can effectively adjust and control the grain rearrangement, crystal phase bonding and pore formation during sintering. The crystal phase composition of the support was mainly quartz, spinel and kyanite. When the sintering temperature was 1 030 ℃, holding time for 2 h, adding 4wt% pore-forming agent, the performance of the tubular support was optimal. The surface of the support was intact and the grain bonding was stable, the energy consumption during the firing process was low and there was no secondary pollution. Compare with the same type of research, the median pore diameter of the SiO2-supported ceramic support in this experiment was 2.676 μm, the porosity was (48±0.9)%, the flexural strength of the support was 64.19 MPa, the water flux was 2 590.02 L·(m2·h·MPa)-1, and the acid-base corrosion rate was 0.019/0.013. The support has excellent performance and stable chemical properties.
Key words:  loess    support    sintering system    pore former    carboxymethyl cellulose
                    发布日期:  2020-05-29
ZTFLH:  X703  
基金资助: 陕西省科技厅重点研发项目专项基金(2017GY-128; 2018GY-178;2020ZDLNY06-09)
通讯作者:  1018915428@qq.com   
作者简介:  同帜,西安工程大学教授级高级工程师。多年来研究废水处理与环保材料的开发,从事环境微生物、污染控制化学、环境化学、水污染控制、环保新材料、环境仪器分析、水资源环境调查等的教学和科研。作为国家环保部西部督查中心专家,陕西省财政厅、发改委、西安市环保局评估中心环保专家和中国纺织工业联合会环保专家,主持和参与了众多科研项目,包括国家自然科学资金、陕西省科技厅、西安市科技局、陕西省教育厅及企业委托等等。在国内外学术期刊上发表论文百余篇,多次获得省部级科技成果奖。
引用本文:    
同帜, 张健需, 孙小娟, 杨博文, 黄开佩. 基于天然黄土低温烧制的多孔管状陶瓷基体及其表征[J]. 材料导报, 2020, 34(12): 12050-12056.
TONG Zhi, ZHANG Jianxu, SUN Xiaojuan, YANG Bowen, HUANG Kaipei. Preparation and Characterization of Macroporous Tubular Ceramic Support Based on Natural Loess at Low Sintering Temperature. Materials Reports, 2020, 34(12): 12050-12056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050137  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12050
1 Ben Ali M, Hamdi N, Rodriguez M A, et al. Ceramics International,2017,43(1),1242.
2 Wang F, Xie Z P, Qian F L, et al. Bulletin of the Chinese Ceramic Society,2012,31(2),285(in Chinese).
王峰,谢志鹏,千粉玲,等.硅酸盐通报,2012,31(2),285.
3 Zhang X S, Ni W H. Environmental Engineering,2013,31(6),108(in Chinese).
张小赛,倪卫红.环境工程,2013,31(6),108.
4 Ketan S, Kulkarni, Shankesh B, et al. Separation Science and Technology,DOI:10.1080/01496395.2019.1567551.
5 Wang X S, Zheng L Y. Membrane technology, Chemical Industry Press, China,2013(in Chinese).
王学松,郑领英.膜技术,化学工业出版社,2013.
6 Abdullah N, Rahman M A, Othman M H D, et al. Ceramics Internatio-nal,2016,42(10),12312.
7 Guo H, Li W, Ye F. Ceramics International,2016,42(4),4819.
8 Zou D, Qiu M H, Chen X F, et al. Journal of Membrane Science,2017,524,141.
9 Jiang Q, Rentschler J, Perrone R. Journal of Membrane Science,2013,431,55.
10 Vasanth D, Pugazhenthi G, Uppaluri R. Journal of Membrane Science,2011,379(1/2),154.
11 Qi H, Xing W H, Fan Y Q. Journal of the Chinese Ceramic Society,2010,38(2),283(in Chinese).
漆虹,邢卫红,范益群.硅酸盐学报,2010,38(2),283.
12 Ahmad A L, Jaya M, Derek C, et al. Journal of Membrane Science,2011,366(1/2),166.
13 Ivanets A I, Ratko A I, Azarova T A, et al. Ceramics International,2014,40(8),12343.
14 Dong Y C, Liu X Q, Ma Q L, et al. Journal of Membrane Science,2006,285(1/2),173.
15 Zhang J. Preparation of porous ceramic membrane supports from waste materials. Master's Thesis, Guizhou University, China,2017(in Chinese).
张杰.利用废弃资源制备多孔陶瓷膜支撑体的研究.硕士学位论文,贵州大学,2017.
16 Fan Z R, Zhou S Y, Li M S, et al. Meterials Reports B: Review Papers,2018,32(10),3638(in Chinese).
范兆如,周守勇,李梅生,等.材料导报:研究篇,2018,32(10),3638.
17 Hu Z Q, Lin S, Li H R. et al. China Civil Engineering Journal,2015,48(S2),64(in Chinese).
胡再强,林山,李宏儒,等.土木工程学报,2015,48(S2),64.
18 Tang S, Xia J. China Ceramics,1987(2),14(in Chinese).
汤上,夏君.中国陶瓷,1987(2),14.
19 Tong Z, Zhang S, Li Y, et al. Powder Metallurgy Technology,2016,34(3),205(in Chinese).
同帜,张帅,李迎,等.粉末冶金技术,2016,34(3),205.
20 Fan L, Tian M K, Zhang J, et,al. Bulletin of the Chinese Ceramic Society,2018,37(5),1781(in Chinese).
范丽,田蒙奎,张杰,等.硅酸盐通报,2018,37(5),1781.
21 Hu M D, Tong Z, Li D C, et al. Materials Science and Engineering of Powder Metallurgy,2016,21(1),103(in Chinese).
胡敏盾,同帜,李大川,等.粉末冶金材料科学与工程,2016,21(1),103.
22 Burggraaf A J, Cot L. Fundamentals of inorganic membrane science and technology, Elsevier, Amsterdam,1996.
23 Lu S Q, Wu S F. CIESC Journal,2015,66(8),2895(in Chinese).
卢尚青,吴素芳.化工学报,2015,66(8),2895.
24 Biesheuvel P M, Verweij H. Journal of Membrane Science,1999,156(1),141.
25 Liang K M, Gu K F, Zhou S R. Journal of the Chinese Ceramic Society,1995,23(5),447(in Chinese).
梁开明,顾扣芬,周守仁.硅酸盐学报,1995,23(5),477.
26 Wang S X, Tian J Y, Wang Q, et al. Journal of Membrane Science, DOI: https://doi.org/10.1016/j.memsci.2018.10.078.
27 Vennat E, Bogicevic C, Fleureau J M, et al. Dental Materials,2009,25(6),729.
28 Li Z F, Huang J G. Journal of the Chinese Ceramic Society,2018,46(9),1250(in Chinese).
李之凡,黄建国.硅酸盐学报,2018,46(9),1250.
[1] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[2] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[3] 白忠祥, 但年华, 但卫华, 高然. 双醛羧甲基纤维素-胶原复合止血材料的研制[J]. 材料导报, 2018, 32(20): 3628-3633.
[4] 范兆如, 周守勇, 李梅生, 赵宜江, 邢卫红. 基于低品位凹凸棒石黏土的陶瓷膜支撑体制备[J]. 材料导报, 2018, 32(20): 3638-3644.
[5] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed