Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12045-12049    https://doi.org/10.11896/cldb.19040122
  无机非金属及其复合材料 |
Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能
吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶
西安建筑科技大学材料科学与工程学院,功能材料研究所,西安 710055
Hydrogen Permeability of Ni-BaCe0.7Y0.3-xTaxO3-δ (x=0, 0.05, 0.1) Cermet Hydrogen Separation Membranes
LYU Qiang, YANG Chunli, CHEN Hong, MA Xinyu, CHEN Xi, ZHANG Qiang, DU Jing
Functional Materials Laboratory, College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 4019KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 质子-电子混合导体氢分离膜理论上对氢气的选择透过率为100%,在氢气的分离提纯领域应用潜力巨大。本工作通过液相法制备了Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0, 0.05, 0.1)金属陶瓷氢分离膜样品,并测试了金属陶瓷氢分离膜样品的氢渗透率与稳定性。在湿润20% H2+80% N2(体积分数)气氛下BaCe0.7Y0.3-xTaxO3-δ(x=0, 0.05, 0.1)的电导率和氢渗透率均随Ta元素掺杂量的增加而减小,且随温度的升高而增大。在3%CO2和10%CO2(体积分数)气氛中,Ni-BaCe0.7Y0.2Ta0.1O3-δ氢渗透率基本保持稳定,而Ni-BaCe0.7Y0.3O3-δ和Ni-BaCe0.7Y0.25Ta0.05O3的氢渗透率持续变大,这可能是由于BaCe0.7Y0.3O3-δ和BaCe0.7Y0.25Ta0.05O3-δ与CO2的反应程度更大,生成的产物不致密,导致样品有效厚度减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕强
杨春利
陈红
马欣宇
陈喜
张强
杜晶
关键词:  金属陶瓷氢分离膜  电导率  氢渗透率  稳定性    
Abstract: With a 100% selectivity for hydrogen,the proton-electron mixed conducting separation membranes have great potential in the application of hydrogen separation and purification. Ni-BaCe0.7Y0.3-xTaxO3-δ (x=0, 0.05, 0.1) cermet hydrogen separation membranes were prepared by liquid phase method, and the hydrogen permeability and stability of the cermet membrane were tested. Both the conductivity and hydrogen permeability of BaCe0.7Y0.3-xTaxO3-δ (x=0, 0.05, 0.1) decrease under the wet 20vol% H2+80vol% N2 atmosphere with the increase of Ta element doping amount, which increases with increasing temperature. In the feed gas containing 3vol% CO2 and 10vol% CO2, the hydrogen permeability of Ni-BaCe0.7Y0.2Ta0.1O3 remained nearly stable, while the hydrogen permeability of Ni-BaCe0.7Y0.3O3-δ and Ni-BaCe0.7Y0.25Ta0.05O3-δ increase continually. This may be because the reaction between BaCe0.7Y0.3-xTaxO3-δ(x=0, 0.05) and CO2 is more severe and the product generated is not dense, which causes the effective thickness of the sample is reduced.
Key words:  cermet hydrogen separation membrane    conductivity    hydrogen permeability    stability
               出版日期:  2020-06-25      发布日期:  2020-05-29
ZTFLH:  O614  
  TM911  
基金资助: 国家自然科学基金青年基金(21506168);陕西省自然科学基金(2015JQ5168)
通讯作者:  yangchunli@xauat.edu.cn   
作者简介:  吕强,现就读于西安建筑科技大学材料科学与工程学院,主要从事钙钛矿结构质子导体制备以及应用研究。
杨春利,西安建筑科技大学材料科学与工程学院副教授。2012年7月取得中国科学技术大学材料学博士学位。同年加入西安建筑科技大学材料科学与工程学院工作至今,主要从事的研究工作涉及中空纤维管、混合导体气体分离膜、固体氧化物燃料电池的制备与表征等方面。在国内外期刊发表文章20余篇,其中SCI收录7篇。
引用本文:    
吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
LYU Qiang, YANG Chunli, CHEN Hong, MA Xinyu, CHEN Xi, ZHANG Qiang, DU Jing. Hydrogen Permeability of Ni-BaCe0.7Y0.3-xTaxO3-δ (x=0, 0.05, 0.1) Cermet Hydrogen Separation Membranes. Materials Reports, 2020, 34(12): 12045-12049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040122  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12045
1 Tao Z T, Yan L T, Qiao J L, et al. Progress in Materials Science,2015,74,1.
2 Barretpa L, Makihira A, Riahia K. International Journal of Hydrogen Energy,2003,28,267.
3 Vispute T P, Zhang H, Sanna A, et al. Science,2010,330,1222.
4 Barelli L, Bidini G, Gallorini F, et al. Energy,2008,33,554.
5 Tuiner J A. Science,2004,305(5686),972.
6 Lu G Q, Diniz D C J C, Duke M, et al. Journal of Colloid and Interface Science,2007,314,589.
7 Gore C M, White J O, Wachsman E D, et al. Journal of Materials Che-mistry A,2014,7,2363.
8 Magraso A, Hervoches C H, Ahmed I, et al. Journal of Materials Che-mistry A,2013,11,3774.
9 Magraso A, Haugsrud R. Journal of Materials Chemistry A,2014,32,12630.
10 Amsif M, Magraso A, Marrero-Lopez D, et al. Chemistry of Materials,2012,24,3868.
11 Escolastico S, Somacescu S, Serra J M. Chemistry of Materials,2014,26,982.
12 Escolastico S, Solis C, Kjolseth C, et al. Energy & Environmental Science,2014,7,3736.
13 Escolastico S, Seeger J, Roitsch S, et al. ChemSusChem,2013,6,1523.
14 Seeger J, Ivanova M E, Meulenberg W A, et al. Inorganic Chemistry,2013,52,10375.
15 Holt D, Forster E, Ivanova M E, et al. Journal of the European Ceramic Society,2014,34,2381.
16 Fang S M. Study on hydrogen permeation performance and stability of dense cermet composite membrane. Ph.D. Thesis, University of Science and Technology of China, China,2008(in Chinese).
方曙民.致密金属陶瓷复合膜的氢渗透性能和稳定性研究.博士学位论文,中国科学技术大学,2008.
17 Kim H, Kim B, Lee J, et al. Ceramics International,2014,40(3),4117.
18 Medvedev D, Murashkina A, Pikalova E, et al. Progress in Materials Science,2014,60(3),72.
19 Phair J W, Badwal S P S. Ionics,2006,12(12),103.
20 Zakowsky N, Williamson S, Irvine J T S. Solid State Ionics,2005,176(39),3019.
21 Tanner C W, Virkar A V. Journal of the Electrochemical Society,1996,143(4),1386.
22 Bi L, Zhang S Q, Fang S M, et al. Electrochemistry Communications,2008,10(10), 1598.
23 Bi L, Fang S M, Tao Z T, et al. Journal of the European Ceramic Society,2009,29(12),2567.
24 Bi Lei. Preparation and electrochemical study of proton conductor solid oxide fuel cell. Ph.D. Thesis, University of Science and Technology of China, China,2009(in Chinese).
毕磊.质子导体固体氧化物燃料电池的制备及其电化学研究.博士学位论文,中国科学技术大学,2008.
25 Lv Q, Yang C L, Ma X Y, et al. Journal of Functional Materials,2018,4(49),4161(in Chinese).
吕强,杨春利,马欣宇,等.功能材料,2018,4(49),4161.
26 Radojkovic A, Zunic M, Savic S M, et al. Ceramics International,2013,39,307.
27 Xie K, Zhou J, Meng G. Journal of Alloys and Compounds,2010,506,8.
28 Kreure K D, Dippel T, Yu M, et al. Solid State Ionics,1996,86-88(1),613.
29 Kreure K D, Adams S, Munch W, et al. Solid State Ionics,2001,145(1-4),295.
30 Kreure K D, Schonherr E, Maier J. Solid State Ionics,1994,70-71(1),278.
31 Wang S W, Zhang L, Zhang L L, et al. Electrochimica Acta,2013,87,194.
32 Norby T, Larring Y. Solid State Ionics,2000,136-137(1-2),139.
[1] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[2] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[5] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[6] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[7] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[8] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[9] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[10] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[11] 徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
[12] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[13] 彭红波, 杨东, 高鹏, 任欣, 牛一帆, 吴敏. 生物炭中溶解性炭黑的释放及环境效应[J]. 材料导报, 2020, 34(11): 11029-11034.
[14] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[15] 王成猛, 王海燕, 高雪云, 牛建宇, 梁梦斐. 利用第一性原理研究Lan(n=2—10)小团簇的结构与稳定性[J]. 材料导报, 2019, 33(Z2): 222-225.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed