Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16104-16108    https://doi.org/10.11896/cldb.19090031
  金属与金属基复合材料 |
Zr基MOFs在大气压等离子体中稳定性的研究
徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲
大连大学物理科学与技术学院,大连 116622
Stability of Zr-based MOFs in Atmospheric-Pressure Plasma
XU Weiwei, DONG Mengyue, ZHAO Jing, ZHANG Mingqing, DI Lanbo, ZHANG Xiuling
College of Physical Science and Technology, Dalian University, Dalian 116622, China
下载:  全 文 ( PDF ) ( 3502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Zr基MOF因具有良好的水热稳定性和一定的酸碱稳定性,被广泛应用于气体的存储分离、药物传输、化学传感以及催化等领域,近年来MOF与等离子体的相互作用也多有研究。本工作以典型UiO-66、UiO-67和UiO-66-NH2为研究对象,探究了它们在大气压介质阻挡放电(DBD)等离子体中的稳定性。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和氮气吸附脱附等温线(BET)分析等离子体处理前后样品的结构和比表面积变化。在三种Zr基MOF中,UiO-66在等离子体中的稳定性最好;UiO-67在等离子体处理后骨架结构部分被破坏,且比表面积仅为等离子体处理前的19.0%;UiO-66-NH2的骨架结构基本被破坏,且比表面积仅为等离子体处理前的3.1%。这说明UiO-67和UiO-66-NH2在CO2、H2混合气体等离子体放电后不能稳定存在。处理前后的UiO-66等离子体的XRD衍射特征峰基本吻合,且UiO-66等离子体处理后的表面积为等离子体处理前的80.2%,说明UiO-66在等离子体中具有良好的稳定性。在放电电压11.4~19.1 kV、放电时间0.5~3 h条件下UiO-66能保持良好的骨架结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐卫卫
董梦悦
赵静
张鸣清
底兰波
张秀玲
关键词:  Zr基金属有机骨架材料  介质阻挡放电  等离子体  稳定性    
Abstract: Zr-based metal-organic frameworks (Zr-MOFs) are widely applied in gas storage and separation, drug delivery, chemical sensing and catalysis, due to their good stability in heat, acid and alkali solutions. They have been used in the process of plasma catalysis, recently. In this work, the stability of three typical Zr-based MOFs (UiO-66, UiO-67, UiO-66-NH2) were studied in the atmospheric-pressure dielectric barrier discharge (DBD) plasma. The structure and specific surface area of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and N2 sorption analysis (BET). The results show that UiO-66 exhibits the best stability among the three typical Zr-MOFs in the DBD plasma. The framework of UiO-67 is damaged after DBD plasma treatment, and UiO-66-NH2 is destroyed seriously. The specific surface areas of UiO-67 and UiO-66-NH2 after plasma treatment are only 19.0% and 3.1% of those before plasma treatment. These indicate that UiO-67 and UiO-66-NH2 cannot exist stably in the DBD plasma when using CO2 and H2 mixture as working gas. For comparison, the XRD characteristic peaks of UiO-66 before and after plasma treatment are basically consistent, and the specific surface area after plasma treatment is 80.2% of that before plasma treatment. UiO-66 can maintain its framework structure under discharge voltage of 11.4—19.1 kV for 0.5—3 h, suggesting that UiO-66 has good stability in plasma.
Key words:  Zr-based metal-organic frameworks (Zr-MOFs)    dielectric barrier discharge (DBD)    plasma    stability
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TB33  
基金资助: 国家自然科学基金(21673026;21773020);大连大学研究生教育教学改革基金
通讯作者:  dilanbo@163.com; xiulz@sina.com   
作者简介:  徐卫卫,大连大学物理科学与技术学院硕士研究生。于2017年在吉林化工学院高分子材料专业取得学士学位。主要从事研究大气压冷等离子体辅助金属催化材料在能源和环境方面的应用。
底兰波,大连大学物理科学与技术学院教授。2012年获大连理工大学等离子体物理学博士学位。主要从事研究大气压冷等离子体合成负载金属催化剂及其能源和环境应用、气液放电以及等离子体增强化学气相沉积(PECVD)。2014年获首届大连市青年科技之星称号,2018年,入选辽宁省“百千万人才工程”千人层次,被选为埃尼奖候选人。
张秀玲,大连大学物理科学与技术学院教授。1998年获大连理工大学应用化学硕士学位,2002年获应用化学博士学位。主要研究方向为等离子体转化温室气体、气液放电、离子液体、MOF以及大气压冷等离子体增强制备功能纳米材料。2007年入选辽宁省“百千万人才工程”百人层次,2012年被评为辽宁省优秀教师。
引用本文:    
徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
XU Weiwei, DONG Mengyue, ZHAO Jing, ZHANG Mingqing, DI Lanbo, ZHANG Xiuling. Stability of Zr-based MOFs in Atmospheric-Pressure Plasma. Materials Reports, 2020, 34(16): 16104-16108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090031  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16104
1 Herbst A, Janiak C, et al. CrystEngComm, 2017, 19(29), 4092.
2 Yang S, Peng L, Bulut S, et al. Chemistry-A European Journal, 2019, 25(9), 2161.
3 Yang L, Zeng X, Wang W, et al. Advanced Functional Materials, 2018, 28(7), 1704537.
4 Zou L, Sun X, Yuan J, et al. Inorganic Chemistry, 2018, 57(17), 10679.
5 Cavka J H, Jakobsen S, Olsbye U, et al. Journal of the American Chemical Society, 2008, 130(42), 13850.
6 Reynolds J E, Walsh K M, Li B, et al. Chemical Communications, 2018, 54(71), 9937.
7 Perfecto-Irigaray M, Beobide G, Castillo O, et al. Chemical Communications, 2019, 55(42), 5954.
8 Li B, Wen H M, Zhou W, et al. The Journal of Physical Chemistry Letters, 2014, 5(20), 3468.
9 Huang H, Zhang W, Yang F, et al. Chemical Engineering Journal, 2016, 289, 247.
10 Ganesh M, Hemalatha P, Peng M M, et al. Aerosol and Air Quality Research, 2014, 14(6), 1605.
11 Hu J, Liu Y, Liu J, et al. Microporous and Mesoporous Materials, 2018, 256, 25.
12 Li Z, Zhao S, Wang H, et al. Colloids and Surfaces B-Biointerfaces, 2019, 178, 1.
13 Decker G E, Stillman Z, Attia L, et al. Chemistry of Materials, 2019, 31(13), 4831.
14 Lammert M, Glissmann C, Stock N. Dalton Transactions, 2017, 46(8), 2425.
15 Oien-Odegaard S, Bouchevreau B, Hylland K, et al. Inorganic Chemistry, 2016, 55(5), 1986.
16 Lawrence M C, Schneider C, Katz M J. Chemical Communications, 2016, 52(28), 4971.
17 Jiao Y, Liu Y, Zhu G, et al. Journal of Physical Chemistry C, 2017, 121(42), 23471.
18 Wu H, Yildirim T, Zhou W. Journal of Physical Chemistry Letters, 2013, 4(6), 925.
19 Ayoub G, Islamoglu T, Goswami S, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15788.
20 Motegi H, Yano K, Setoyama N, et al. Journal of Porous Materials, 2017, 24(5), 1327.
21 Buzek D, Demel J, Lang K. Inorganic Chemistry, 2018, 57(22), 14290.
22 Wang J, Zhu H, Li B, et al. Chemistry-A European Journal, 2018, 24(61), 16426.
23 Morris W, Wang S, Cho D, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 33413.
24 Leus K, Bogaerts T, De Decker J, et al. Microporous and Mesoporous Materials, 2016, 226(2016), 110.
25 Fang Y, Zhang L, Zhao Q, et al. Chemical Papers, 2019, 73(6), 1401.
26 Di L, Zhan Z, Zhang X, et al. Plasma Science and Technology, 2016, 18(5), 544.
27 Di L, Zhang J, Zhang X. Plasma Processes and Polymers, 2018, 15(5), 1700234.
28 Zhou Y, Liu C J. Plasma Chemistry and Plasma Processing, 2011, 31(3), 499.
29 Sun B, Chen G H, Zhao Q B, et al. Industriaal Safety and Environmental Protection, 2018, 44(1), 9(in Chinese).
孙彪, 陈光辉, 赵乾斌, 等. 工业安全与环保, 2018, 44(1), 9.
30 Zhan Z B. Activation and properties of metal-organic framework (Cu-MOF) by atmospheric pressure cold plasma. Master’s Thesis, Dalian University, China, 2017(in Chinese).
詹志彬. 金属有机骨架材料Cu-MOF的大气压冷等离子体活化及性能研究. 硕士学位论文,大连大学, 2017.
31 Jiang H, Gao Q, Wang S, et al. Journal of CO2 Utilization, 2019, 31, 167.
32 Zhang S, Li L, Zhao S, et al. Inorganic Chemistry, 2015, 54(17), 8375.
33 Zhong G, Liu D, Zhang J. ChemistrySelect, 2018, 3(25), 7066.
34 Abdel-Mageed A M, Rungtaweevoranit B, Parlinska-Wojtan M, et al. Journal of the American Chemical Society, 2019, 141(12), 5201.
35 Wang Y, Hu Z, Kundu T, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(9), 11904.
36 Molavi H, Eskandari A, Shojaei A, et al. Microporous and Mesoporous Materials, 2018, 257, 193.
37 Hu J, Liu Y, Liu J, et al. Microporous and Mesoporous Materials, 2018, 256, 25.
38 Xu W, Dong M, Di L, et al. Nanomaterials, 2019, 9(10), 1432.
39 Xu W, Zhang X, Dong M, et al. Plasma Science and Technology, 2019, 21(4), 044004.
40 Yang F, Li W, Tang B. Journal of Alloys and Compounds, 2018, 733, 8.
41 Mocniak K A, Kubajewska I, Spillane D E M, et al. RSC Advances, 2015, 5(102), 83648
42 Rodrigues M A, Ribeiro J d S, Costa E d S, et al. Separation and Purification Technology, 2018, 192, 491.
43 Jiang X, Li S, He S, et al. Journal of Materials Chemistry A, 2018, 6(31), 15064.
44 Xu Z, Zhao G, Ullah L, et al. RSC Advances, 2018, 8(18), 10009.
[1] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[2] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[5] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[6] 郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
[7] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[8] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[9] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[10] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[11] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[12] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[13] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[14] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[15] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed