Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12036-12039    https://doi.org/10.11896/cldb.19070104
  无机非金属及其复合材料 |
Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长
付念1, 谷雨2, 郭雨1, 张建飞1, 陈道俊1, 刘啸宇1, 丛日东1
1 河北大学物理科学与技术学院,保定 071002
2 河北大学数学与信息科学学院,保定 071002
Self-assembled Growth of Fe Doped AlN Nanowires/3D Nanosheets Composite Hierarchical Nanostructures
FU Nian1, GU Yu2, GUO Yu1, ZHANG Jianfei1, CHEN Daojun1, LIU Xiaoyu1, CONG Ridong1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
下载:  全 文 ( PDF ) ( 4997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 源于自组装生长的分级纳米结构因新颖的属性而吸引了人们的广泛关注。采用等离子体辅助直流弧光放电技术,以FeAl合金以及N2为反应源,一步实现AlN∶Fe纳米线/三维片层复合分级纳米结构的制备。通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、能量色散X射线电子谱仪(EDS)、高分辨透射电子显微镜(HRTEM)等对该分级结构的晶体结构、形貌、元素组成、微观结构进行了详细的分析,发现该复合分级纳米结构由一维AlN∶Fe纳米线上AlN∶Fe纳米颗粒原位自组装生长而成。对分级片层结构的生长机理进行研究,发现 AlN∶Fe磁性纳米粒子的电偶极矩及其表面上积聚电荷协同促使纳米粒子自组装形成AlN∶Fe纳米片层结构。磁性测试表明,该复合分级纳米结构具有室温铁磁性,Fe3+的3d能带中未被抵消的自发磁矩导致的自发极化是其磁性产生的主要原因。本工作为利用磁性纳米粒子自组装制备复杂的分级纳米结构系统提供了可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付念
谷雨
郭雨
张建飞
陈道俊
刘啸宇
丛日东
关键词:  等离子体辅助弧光放电  自组装  生长机理  分级纳米结构    
Abstract: Self-assembled hierarchical nanostructures have attracted wide attention due to their novel properties. In this paper, plasma-assisted direct current (DC) arc discharge method was used to one-step prepare AlN∶Fe nanowires/three dimensional (3D) nanosheets composite hierarchical nanostructures using FeAl alloy and N2 as the reaction sources. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray electron spectrometer (EDS), high-resolution transmission electron microscope (HRTEM) were carried on for the detailed analysis of the crystal structure, morphology, element composition, microstructure of the hierarchical structure. We found that the combined hierarchical nanostructures are composed of in situ self-assemble of AlN∶Fe nanoparticles on the one-dimensional AlN∶Fe nanwires. Investigation on the growth mechanism of the hierarchical nanostructures showed that the electric dipole moment and surface charge accumulation of AlN∶Fe magnetic nanoparticles cooperatively promote the self-assembly of magnetic nanoparticles to form the AlN∶Fe nanosheet structure. At the same time, magnetism analysis showed that the hierarchical nanostructures exhibit ferromagnetism at room temperature. The spontaneous polarization caused by uncancelled spontaneous magnetic moment in 3d band of Fe3+ should be the primary cause of its magnetism. The implementation of this work provides the feasibility of using self-assembly magnetic nanoparticles to prepare complex hierarchical nanostructure system.
Key words:  plasma-assisted DC arc discharge    self-assemble    growth mechanism    hierarchical nanostructures
                    发布日期:  2020-05-29
ZTFLH:  O0469  
基金资助: 国家自然科学基金青年基金(11703004;61504036);河北省自然科学基金(E2017201209;A2016201087)
通讯作者:  liuxiaoyu0736@126.com   
作者简介:  付念,河北大学物理科学与技术学院副教授。2015年6月毕业于河北工业大学材料科学与工程专业。同年引进到河北大学工作至今,主要从事热电材料、纳米复合材料、高分子等材料的制备、表征以及应用研究。在国内外学术期刊发表论文30余篇,授权发明专利2项,实用新型专利1项。作为第一参与人参与国家自然科学基金青年基金1项,主持河北省自然科学基金1项,教育厅项目1项,保定市科技局项目1项,获得保定市科技进步三等奖1项。
引用本文:    
付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
FU Nian, GU Yu, GUO Yu, ZHANG Jianfei, CHEN Daojun, LIU Xiaoyu, CONG Ridong. Self-assembled Growth of Fe Doped AlN Nanowires/3D Nanosheets Composite Hierarchical Nanostructures. Materials Reports, 2020, 34(12): 12036-12039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070104  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12036
1 Taniyasu Y, Kasu M, Makimoto T. Nature,2006,441,325.
2 Taniyasu Y, Kasu M, Makimoto T. Applied Physics Letters,2004,84,2115.
3 Tsubouchi K, Mikoshiba N. IEEE Transactions on Sonics and Ultrasonics,1985,32,634.
4 Xia Y N, Yang P D, Sun Y G, et al. Advanced Materials,2003,15,353.
5 Wu Q, Hu Z, Wang X, et al. Journal of Materials Chemistry,2003,13,2024.
6 Tondare V N, Balasubramanian C, Shende S V, et al. Applied Physics Letters,2002,80,4813.
7 Shi S C, Chen C F, Chattopadhyay S, et al. Advanced Functional Mate-rials,2005,15,781.
8 Liu N, Wu Q, He C, et al. ACS Applied Materials & Interfaces,2009,1,1927.
9 Wu Q, Hu Z, Wang X Z, et al. Journal of Physical Chemistry B,2003,107,9726.
10 Zhong W, Yang J Y, Duan X K, et al. Materials Reports,2007,21(S1),14(in Chinese).
钟炜,杨君友,段兴凯,等.材料导报,2007,21(专辑Ⅷ),14.
11 Wu L, Shen L, Cheng T, et al. Journal of Shenyang Institute of Chemical Technology,2008,22(2),130(in Chinese).
吴丽君,沈龙海,成泰民,等.沈阳化工学院学报,2008,22(2),130.
12 Cong R, Wang Q, Zhang J, et al. Materials Chemistry and Physics,2011,129,611.
13 Liu Y, Qian B, Zhang Y. New Chemical Materials,2013,40(7),53(in Chinese).
柳颖,钱炳建,张亚非,等.化工新型材料,2013,40(7),53.
14 Yang J, Pan Z, Sheng L, et al. Journal of Inorganic Materials,2017,32(1),39(in Chinese).
杨洁,潘争辉,盛雷梅,等.无机材料学报,2017,32(1),39.
15 Shen L, Cheng T, Wu L, et al. Journal of Alloys and Compounds,2008,465,562.
16 Yang S, Gao R, Yu R. Rare Metal Materials and Engineering,2009,38(S2),991(in Chinese).
杨松林,高润生,于荣海,等.稀有金属材料与工程,2009,38(S2),991.
17 Xu Y, Yao B, Liu D, et al. CrystEngComm,2013,15,3271.
18 Liu X, Mi J, Zhang B, et al. Journal of Alloys and Compounds,2018,731,1037.
19 Wang L, Xu L, Kuang H, et al. Accounts of Chemical Research,2012,45,1916.
20 Saha K, Agasti S S, Kim C, et al. Chemical Reviews,2012,112,2739.
21 Chou L Y, Zagorovsky K, Chan W C. Nature Nanotechnology,2014,9,148.
22 Daniel M C, Astruc D. Chemical Reviews,2004,104,293.
23 Rycenga M, Cobley C M, Zeng J, et al. Chemical Reviews,2011,111,3669.
24 Liu Y, Liu Y, Yin J J, et al. Macromolecular Rapid Communications,2015,36,711.
25 Xia Y, Yin Y, Lu Y, et al. Advanced Functional Materials,2003,13,907.
26 Sharma J, Chhabra R, Cheng A, et al. Science,2009,323,112.
27 Devries G A, Brunnbauer M, Hu Y, et al. Science,2007,315,358.
28 Sahoo Y, Cheon M, Wang S, et al. Journal of Physical Chemistry B,2004,108,3380.
29 Cui X Y, Delley B, Freeman A J, et al. Physical Review Letters,2006,97,016402.
30 Ji X H, Lau S P, Yu S F, et al. Applied Physics Letters,2007,90,193118.
31 Lei W W, Liu D, Ma Y M, et al. Angewandte Chemie-International Edition,2010,49,173.
32 Ge J, Hu Y, Zhang T, et al. Journal of the American Chemical Society,2007,129,8974.
33 Golosovsky M, Saado Y, Davidov D. Applied Physics Letters,1999,75,4168.
34 Grzybowski B A, Jiang X, Stone H A, et al. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,2001,64,011603.
35 Helseth L E. Langmuir,2005,21,7276.
36 Helseth L E, Muruganathan R, Zhang Y, et al. Langmuir,2005,21,7271.
37 Wang N, Cai Y, Zhang R Q. Materials Science and Engineering R: Reports,2008,60,1.
38 Tang Z, Zhang Z, Wang Y, et al. Science,2006, 314,274.
[1] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[2] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[3] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[8] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[9] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[10] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[11] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[12] 张达, 戴永年, 梁风. 电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策*[J]. CLDB, 2017, 31(9): 64-71.
[13] 马明亮, 林静, 万菲, 马衍轩, 冯超, 卢桂霞, 张家栋. 有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 29-33.
[14] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[15] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed