Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7091-7098    https://doi.org/10.11896/cldb.19080086
  无机非金属及其复合材料 |
纳米尺度自组装相互作用力研究进展
赖宇明, 高雅, 要秀全
北京科技大学国家材料服役安全科学中心,北京 100083
Recent Progress in Forces of Nanoscale Self-assembly
LAI Yuming, GAO Ya, YAO Xiuquan
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 2869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料具有优异的光学、力学、电学性能,但很多应用仅靠单个纳米粒子难以实现,常需要通过纳米材料组装得到有序结构。自组装是获得有序排列纳米结构最有效的方法。理想的自组装是相对无序的构造单元在恰当的相互作用力驱动下得到热力学能最小化的平衡有序结构的过程。如果构造单元发生动力学控制过程,则会形成沉淀、凝胶等。因此,纳米尺度组分之间自组装的关键在于理解和操控纳米组分之间的相互作用。
   自组装过程中热力学控制和动力学控制之间的竞争结果由相互作用力的作用距离决定。自组装最理想的驱动力是相对于构造单元尺寸而言的长程作用力。范德华力是相对短程的相互作用力,仅在分子范围内发生作用,对于分子尺度的几倍或几十倍的小尺寸纳米构造单元来说是适合的。一般来说,微米尺度的构造单元在短程吸引力的相互作用下总是得到无序的沉淀聚集体或凝胶。除了相互作用距离外,相互作用力的大小也能影响自组装体系的形成。自组装结构中的相互作用力强度超过了一定范围会得到动力学控制的无序聚集体。
   本文对近年来用于纳米尺度自组装体系的驱动力进行了梳理,探讨了范德华力、静电相互作用、磁力、氢键、DNA碱基对相互作用、交联相互作用、分子偶极相互作用等相互作用力在纳米尺度自组装体系中发挥的作用:讨论了从驱动力在纳米尺度下的大小及作用距离,到驱动力与纳米粒子尺寸和纳米粒子间距的关系,并着重分析了相互作用力在纳米尺度下与其他尺度下的不同之处。对纳米尺度相互作用力进行估算时,介绍了所涉及理论的局限性,并将估算结果与实验结果进行对照。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赖宇明
高雅
要秀全
关键词:  纳米材料  自组装  相互作用力    
Abstract: Nanomaterials have excellent optical, mechanical and electrical properties, but many nanomaterials’ applications are not based on individual nano-objects but rather on ordered structures. Self-assembly is arguably the most efficient way for achieving organize nano-objects as it can make large numbers of individual particles into ordered structures. Ideal self-assembly is the process during which a collection of disorganized re-latively simple building block units combining into a minimal thermodynamic energy equilibrium ordered structure driven by the appropriate interaction force. If building block units were assembly in kinetics control process, it could lead to the formation of either precipitate or amorphous gels. Thus, the key of nanoscopic components assembly into lager structures is understanding the quantitative detail of interparticle interactions and manipulate it.
The results of competition between thermodynamic control and dynamic control are determined by the distance of interaction forces. The ideal driving force for self-assembly is the long-range force relative to the size of the building block units. Van der Waals force is a relatively short-range interaction force which acts appreciably over only molecular dimensions, could be utilized in smaller nanoscopic building block units which is most a few to tens of times larger than molecular length scales. Larger particles such as micrometer-scale colloids interacting through similar short-range attractive forces will invariably aggregate to form disordered precipitates or gels. In addition to the interaction length scale, the magnitude of the interaction forces can also affect the results of self-assembly system. Dynamically controlled disordered aggregates will be formed when the strength of interaction force in self-assembly system exceeds a certain range.
This review describes several interparticle forces including van der Waals force, electrostatic interaction, magnetic force, hydrogen bond, DNA base pair interaction, cross-linking interaction and molecular dipole interaction that can be used in nanoscale self-assembly. The magnitude and length scale of each type of interaction and the scaling with particle size and interparticle distance are discussed. The discussion emphasized on the unique characteristics to the nanoscale. When estimates the potential of interaction, limitations of theoretical simulations and examples of recent experimental systems are discussed.
Key words:  nanomaterials    self-assembly    interaction
                    发布日期:  2020-04-10
ZTFLH:  O64  
基金资助: 中央高校基本科研业务费(FRF-GF-18-003A)
通讯作者:  yuminglai@ustb.edu.cn   
作者简介:  赖宇明,北京科技大学国家材料服役安全科学中心工程师。2008年本科毕业于西南大学化学化工学院,2014年在中国科学院国家纳米科学中心物理化学专业取得博士学位。自2014年在北京科技大学工作至今,主要从事材料和器件的表面界面性质研究。近年来,发表相关论文7篇。
高雅,2018年7月毕业于河北工程大学,获得工学学士学位。现为北京科技大学国家材料服役安全科学中心研究生,在文磊副研究员和赖宇明博士的指导下进行研究。目前主要研究领域为缓蚀剂及其与金属/合金表面的相互作用。
要秀全,2018年7月毕业于内蒙古科技大学,获得工学硕士学位。现为北京科技大学国家材料服役安全科学中心博士生,在金莹研究员和赖宇明博士的指导下进行研究,目前主要研究领域为缓蚀剂及其与金属/合金表面的相互作用。
引用本文:    
赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
LAI Yuming, GAO Ya, YAO Xiuquan. Recent Progress in Forces of Nanoscale Self-assembly. Materials Reports, 2020, 34(7): 7091-7098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080086  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7091
1 Zhang J L, Xue L J,Han Y C. Langmuir, 2005, 21, 5.
2 Cui Y, Lieber C M. Science, 2001, 291, 851.
3 Whitesides G M, Grzybowski B. Science, 2002, 295, 2418.
4 Fialkowski M, Bishop K J M, Klajn R,et al. Journal of Physical Chemistry B, 2006, 110, 2482.
5 Vericat C, Vela M E, Benitez G,et al. Chemical Society Reviews, 2010, 39, 1805.
6 Shevchenko E V, Talapin D V,Kotov N A,et al. Nature, 2006, 439, 55.
7 Klajn R, Bishop K J M, Fialkowski M,et al. Science, 2007, 316, 261.
8 Min Y J, Akbulut M, Kristiansen K,et al. Nature Materials, 2008, 7, 527.
9 Kulkarni S D, Walimbe P C, Ingulkar R B,et al. ACS Omega, 2019, 4, 13061.
10 Wei W, Zhang H, Wang W,et al. ACS Applied Materials & Interfaces, 2019, 11, 24478.
11 Marino E, Kodger T E, Wegdam G H,et al. Advanced Materials, 2018, 30, 1803433.
12 Bishop K J M, Wilmer C E, Soh S,et al. Small, 2009, 5, 1600.
13 Sau T K, Murphy C J. Langmuir, 2005, 21, 2923.
14 Mayer C R, Neveu S, Secheresse F,et al. Journal of Colloid and Interface Science, 2004, 273, 350.
15 Zhang H, Wang D. Angewandte Chemie-International Edition, 2008, 47, 3984.
16 Dawson K A. Current Opinion in Colloid & Interface Science, 2002, 7, 218.
17 Butter K, Bomans P H H, Frederik P M,et al. Nature Materials, 2003, 2, 88.
18 Chayen N E. Trends in Biotechnology, 2002, 20, 98.
19 Murray C B, Kagan C R, Bawendi M G. Annual Review of Materials Science, 2000, 30, 545.
20 Murray C B, Norris D J, Bawendi M G. Journal of the American Chemical Society, 1993, 115, 8706.
21 Yamaki M, Higo J, Nagayama K. Langmuir, 1995, 11, 2975.
22 Israelachvili J N. Intermolecular and surface forces, Academic Press,America, 2011.
23 Kalsin A M, Fialkowski M, Paszewski M,et al. Science, 2006, 312, 420.
24 Sepelak V, Baabe D, Mienert D,et al. Journal of Magnetism and Magnetic Materials, 2003, 257, 377.
25 Ahniyaz A, Sakamoto Y, Bergstrom L. Proceedings of the National Aca-demy of Sciences of the United States of America, 2007, 104, 17570.
26 Nonappa, Ikkala O. Advanced Functional Materials, 2018, 28, 14.
27 Thomas K G, Barazzouk S, Ipe B I,et al. Journal of Physical Chemistry B, 2004, 108, 13066.
28 Mirkin C A, Letsinger R L, Mucic R C,et al. Nature, 1996, 382, 607.
29 Pruneanu S, Al-Said S A F, Dong L Q,et al. Advanced Functional Materials, 2008, 18, 2444.
30 Yan H, Park S H, Finkelstein G,et al. Science, 2003, 301, 1882.
31 Sharma J, Chhabra R, Cheng A,et al. Science, 2009, 323, 112.
32 Puchner E M, Kufer S K, Strackharn M,et al. Nano Letters, 2008, 8, 3692.
33 Biancaniello P L, Kim A J, Crocker J C. Physical Review Letters, 2005, 94,058302-1.
34 Hinterwirth H, Kappel S, Waitz T,et al. ACS Nano, 2013, 7, 1129.
35 Wei Y H, Bishop K J M, Kim J,et al. Angewandte Chemie-International Edition, 2009, 48, 9477.
36 Klajn R, Bishop K J M, Grzybowski B A, Proceedings of the National Academy of Sciences of the United States of America, 2007, 107, 10305.
[1] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[2] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[5] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[6] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[7] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[8] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[9] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[10] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[11] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[12] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[13] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[14] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[15] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed