Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3638-3644    https://doi.org/10.11896/j.issn.1005-023X.2018.20.026
  中国材料大会——环境工程材料 |
基于低品位凹凸棒石黏土的陶瓷膜支撑体制备
范兆如1,2, 周守勇2, 李梅生2, 赵宜江2, 邢卫红1
1 南京工业大学化工学院,材料化学工程国家重点实验室,国家特种分离膜材料工程技术中心,南京 210009;
2 淮阴师范学院化学化工学院,江苏省环境功能材料工程实验室,江苏省低维材料化学重点实验室,淮安 223300;
Preparation of Low Grade Attapulgite Clay Porous Supports for Ceramic Membranes
FAN Zhaoru1,2, ZHOU Shouyong2, LI Meisheng2, ZHAO Yijiang2, XING Weihong1
1 National Engineering Research Center for Special Separation Membrane, State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009;
2 Jiangsu Engineering Laboratory for Environment Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300;
下载:  全 文 ( PDF ) ( 4529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔陶瓷膜支撑体是陶瓷膜制备与应用的基础,是支撑膜层的关键因素,为陶瓷膜提供一定的机械强度和耐腐蚀性能。由于支撑体材质单一,原料不易烧结且造价成本高等原因,各国学者开始寻找一些新的、更廉价的原料(如硅藻土、粘土、高岭土、粉煤灰等)来代替氧化铝作为制备支撑体的原材料,并取得了一定的进展。本工作采用低品位凹凸棒石黏土制备多孔陶瓷膜支撑体,系统研究了原料配比、成型压力、烧结温度和添加剂对支撑体性能的影响。结果表明:凹凸棒石黏土中加入适量的氧化铝作为骨料,能够有效阻止支撑体在烧结过程中的过度收缩,使其收缩率由(30±0.12)%降低到(3.1±0.05)%,支撑体的机械强度和孔隙率大幅增加。支撑体孔隙率随造孔剂添加量增加而增大,机械强度随造孔剂添加量增加而降低。支撑体的机械强度随成型压力增加而变大,孔隙率随成型压力增加而减少。支撑体的机械强度随烧结温度的升高而增大,当烧结温度超过750 ℃时,凹凸棒石黏土结构开始坍塌,支撑体致密化开始形成,孔隙率显著降低。当凹凸棒石黏土含量为 63%,氧化铝含量为 29%,造孔剂含量为6%,干压压力为10 MPa,烧结温度700 ℃时,支撑体性能最优,平均机械强度为(18.11±1.83) MPa,孔隙率为(45.94±0.49)%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范兆如
周守勇
李梅生
赵宜江
邢卫红
关键词:  凹凸棒石黏土  陶瓷膜支撑体  烧结  耐酸碱腐蚀    
Abstract: Porous ceramic membrane support is the basis of ceramic membrane preparation and application, which is the key factor of supporting membrane layer. It provides certain mechanical strength and corrosion resistance for ceramic membrane. Preparation of the ceramic membrane with inexpensive raw materials, such as diatomite, kaolin and fly ash instead of alumina and lower sintering temperature would be beneficial to reduce the cost of the ceramic membranes and consolidate their applications in industrial processes. This work aimed to develop low-cost ceramic membrane supports from low-grade attapulgite clay (ATP). The effects of raw material ratio, pressing pressure, sintering temperature, pore forming agent and sintering additives on the microstructure and performance of the support were systematically studied. The results showed that the addition of appropriate amount of alumina in attapulgite clay can effectively prevent the excessive shrinkage of the support during sintering, and reduce its shrinkage rate from (30±0.12)% to (3.1±0.05)%, which greatly increased the mechanical strength and porosity of the support. The porosity of the support increased with the increase of the amount of pore-forming agent, while the mechanical strength decreased. The mechanical strength increased with the increase of pressing pressure and the porosity decreased. The mechanical strength increased with the increase of sintering temperature. When the sintering temperature exceeded 750 ℃, the attapulgite structure began to collapse, support began to form densification, and the porosity decreased significantly. When the content of attapulgite clay was 63%, alumina was 29%, pore-forming agent was 6%, the pressing pressure was 10 MPa, and the sintering temperature was 700 ℃, the perfor-mance of the support was optimal, the average mechanical strength was (18.11±1.83) MPa, and the porosity was (45.94±0.49)%.
Key words:  attapulgite clay    ceramic membrane support    sintering    acid and alkali corrosion resistance
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(21476094;21406082);江苏省自然科学基金(BK20171268);淮安市科技支撑项目(HAG201609);江苏省高校“青蓝工程”资助项目
作者简介:  范兆如:男,1990年生,硕士研究生,研究方向为分离膜制备与应用 E-mail:13327969153@163.com 赵宜江:通信作者,男,1968年生,博士,教授,研究方向为分离膜制备与应用 E-mail:yjzhao@hytc.edu.cn
引用本文:    
范兆如, 周守勇, 李梅生, 赵宜江, 邢卫红. 基于低品位凹凸棒石黏土的陶瓷膜支撑体制备[J]. 材料导报, 2018, 32(20): 3638-3644.
FAN Zhaoru, ZHOU Shouyong, LI Meisheng, ZHAO Yijiang, XING Weihong. Preparation of Low Grade Attapulgite Clay Porous Supports for Ceramic Membranes. Materials Reports, 2018, 32(20): 3638-3644.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.026  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3638
1 Anderson L L, Armstrong P A, Broekhuis R R, et al. Advances in ion transport membrane technology for oxygen and syngas production[J]. Solid State Ionics,2016,288:331.
2 Lorente-Ayza M M, Mestre S, Menéndez M, et al. Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes[J]. Journal of the European Ceramic Society,2015,35(13):3681.
3 Zhu J, Fan Y, Xu N. Modified dip-coating method for preparation of pinhole-free ceramic membranes[J]. Journal of Membrane Science,2011,367(1):14.
4 Wu L J, Zhou S Y, Li M S, et al. Research progress of new ceramic membrane material[J]. New Chemical Materials,2016,44(6):43(in Chinese).
吴立剑,周守勇,李梅生,等.新型陶瓷膜材料的研究进展[J].化工新型材料,2016,44(6):43.
5 Mouiya M, Abourriche A, Bouazizi A, et al. Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment[J]. Desalination,2018,427:42.
6 Fan Y Q, Qi H, Xu N P. Advance in preparation techniques of po-rous ceramic membranes[J]. Ciesc Journal,2013,64(1):107(in Chinese).
范益群,漆虹,徐南平.多孔陶瓷膜制备技术研究进展[J].化工学报,2013,64(1):107.
7 Kouras N, Harabi A, Bouzerara F, et al. Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures[J]. Journal of the European Ceramic Society,2017,37:3159.
8 Ali M B, Hamdi N, Rodriguez M A, et al. Macroporous ceramic supports from natural clays. Improvement by the use of activated clays[J]. Ceramics International,2017,43(1):1242.
9 Guo H, Li W, Ye F. Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering[J]. Ceramics International,2016,42(4):4819.
10 Jiang Q, Rentschler J, Perrone R. Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production[J]. Journal of Membrane Science,2013,431(431):55.
11 Zou D, Qiu M H, Chen X F, et al. One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process[J]. Journal of Membrane Science,2017,524:141.
12 Munirasu S, Haija M A, Banat F. Use of membrane technology for oil field and refinery produced water treatment—A review[J]. Process Safety and Environmental Protection,2016,100:183.
13 Zheng X, Zhang Z, Yu D, et al. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply[J]. Resources Conservation and Recycling,2015,105:1.
14 Zhu M M, Han J Q, Wang F, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering,2017,302:1.
15 Jeong Y, Lee S, Hong S, et al. Preparation, characterization and application of low-cost pyrophyllite-alumina composite ceramic membranes for treating low-strength domestic wastewater[J]. Journal of Membrane Science,2017,536:108.
16 Aust U, Benfer S, Dietze M, et al. Development of microporous ceramic membranes in the system TiO2/ZrO2[J]. Journal of Membrane Science,2006,281(1):463.
17 Babaluo A, Kokabi M, Manteghian M, et al. A modified model for alumina membranes formed by gel-casting followed by dip-coating[J]. Journal of the European Ceramic Society,2004,24(15):3779.
18 Chen X F, Zhang Y, Tang J X, et al. Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane[J]. Journal of Membrane Science,2018,552:77.
19 Shqau K, Mottern M L, Di Y, et al. Preparation and properties of porous α-Al2O3 membrane supports[J]. Journal of the American Ceramic Society,2010,89(6):1790.
20 Biesheuvel P M, Verweij H. Design of ceramic membrane supports: Permeability, tensile strength and stress[J]. Journal of Membrane Science,1999,156(1):141.
21 Kwon S, Messing G L. Design of ceramic membrane supports: Permeability, tensile strength and stress[J]. Journal of Membrane Scie-nce,1998,33(4):913.
22 Guo H L, Zhao S F, Qi H, et al. Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration[J]. Microporous and Mesoporous Materials,2018,260:125.
23 Zhu Y K, Chen D J. Preparation and characterization of attapulgite-based nanofibrous membranes[J]. Materials and Design,2017,113:60.
24 Liu Z J, Chen Z H, Yuan H J, et al. Effects of attapulgite clay on soil aggregate and wheat growth[J]. Chinese Journal of Soil Science,2010,41(1):142(in Chinese).
刘左军,陈正宏,袁惠君,等.凹凸棒石粘土对土壤团粒结构及小麦生长的影响[J].土壤通报,2010,41(1):142.
25 Brindley W F. The structural scheme of attapulgite [J]. american Mineralogist,1940,25:405.
26 Guo H, Zhang H, Peng F, et al. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Applied Catalysis A: Ge-neral,2015,503:511.
27 国家技术监督局.GB/T1965-1996多孔陶瓷膜抗弯强度试验方法[S].北京:中国标准出版社,1997.
28 国家技术监督局.GB/T1966-1996多孔陶瓷显气孔率、容重试验方法[S].北京:中国标准出版社,1997.
29 Yang Y L, Zhou J E, Wang Y Q, et al. Effect of nano-TiO2 on sintering process of alumina porous ceramic membrane support[J]. Journal of Synthetic Crystals,2015,44(10):2841(in Chinese).
杨玉龙,周健儿,汪永清,等.纳米TiO2对氧化铝质多孔陶瓷膜支撑体烧结过程的影响[J].人工晶体学报,2015,44(10):2841.30 Xie J J, Chen T H, Qing C S, et al. Structure evolution of palygorskite after heat-treatment[J]. Earth Science Frontiers,2014,21(5):338(in Chinese).
谢晶晶,陈天虎,庆承松,等.热处理凹凸棒石的结构演化[J].地学前缘,2014,21(5):338.
31 Arzani M, Mahdavi H R, Sheikhi M, et al. Ceramic monolith as microfiltration membrane: Preparation, characterization and perfor-mance evaluation[J]. Applied Clay Science,2018,161:456.
32 Cheng K K, Chang Q B, Wang Y Q, et al. Preparation of α-Al2O3 ceramic membrane support used nano-alumina as sintering-aid[J]. China Ceramics,2013,49(10):9(in Chinese).
程科恺,常启兵,汪永清,等.以纳米氧化铝为助烧结剂制备α-Al2O3陶瓷膜支撑体[J].中国陶瓷,2013,49(10):9.
33 Shen Y, Qiang B, Hong Q I, et al. Fabrication and characterization of porous SiC support and Al2O3/SiC composite membrane[J]. Membrane Science and Technology,2013,33(1):22.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[3] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[4] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[5] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[6] 王丽丽, 姚建省, 许亮, 杨小薇, 顾国红, 李鑫, 牛书鑫. 熔融石英球形粉对陶瓷型芯高温收缩的影响[J]. 材料导报, 2019, 33(14): 2311-2314.
[7] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[8] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[9] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[10] 付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
[11] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[12] 雷紫涵, 肖国庆, 丁冬海, 杨守磊. 埋碳烧结法制备碳/铝酸钙复合粉体及其微观表征[J]. 材料导报, 2018, 32(22): 3862-3867.
[13] 周头军,李家节,郭诚君,丁云峰,陈金水. 回收制备烧结Nd-Fe-B磁体的磁性能与耐热性能[J]. 《材料导报》期刊社, 2018, 32(2): 180-183.
[14] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[15] 董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed