Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2311-2314    https://doi.org/10.11896/cldb.18060123
  无机非金属及其复合材料 |
熔融石英球形粉对陶瓷型芯高温收缩的影响
王丽丽, 姚建省, 许亮, 杨小薇, 顾国红, 李鑫, 牛书鑫
北京航空材料研究院先进高温结构材料重点实验室,北京 100095
Effect of Fused Silica Spherical Particles on Shrinkage Properties of Ceramic Cores
WANG Lili, YAO Jiansheng, XU Liang, YANG Xiaowei, GU Guohong, LI Xin, NIU Shuxin
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 2967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以熔融石英球形粉、角形粉为原料,采用注射成型工艺制备陶瓷型芯,对比型芯的烧结收缩和二次烧结收缩,并结合SEM和XRD分析,探讨了添加熔融石英球形粉对陶瓷型芯高温收缩的影响。研究结果表明:当混合粉粒度级配相近时,由100%熔融石英球形粉制备的型芯在1 200 ℃的烧结收缩率远小于由角形粉制备的型芯;在SiO2-ZrSiO4和SiO2-Al2O3型芯原料配比不变时,添加熔融石英球形粉可起到抑制原有型芯料烧结收缩的作用;随着球形粉添加量的增大,型芯的烧结收缩率有不同程度的降低。熔融石英球形粉对型芯烧结收缩的抑制作用与球形粉中残留的石英晶相含量高及其高温方石英化有关。添加熔融石英球形粉对型芯1 500 ℃二次烧结收缩的影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽丽
姚建省
许亮
杨小薇
顾国红
李鑫
牛书鑫
关键词:  球形粉  氧化硅基陶瓷型芯  烧结收缩  二次烧结收缩    
Abstract: Ceramic cores with fused silica spherical particles were prepared by injection molding. Compared with the comminuted particles, the effects of fused silica spherical particles on sintering shrinkage at 1 200 ℃ and 1 500 ℃ were investigated by SEM and XRD. The results showed that the ceramic cores with 100% fused silica spherical particles had a smaller sintering shrinkage at 1 200 ℃ than cores with 100% fused silica comminuted particles when the particle size distributions of fused silica were similar. When the proportion of raw materials (not include spherical particles) was constant, adding spherical particles could inhibit the sintering at 1 200 ℃ of SiO2-ZrSiO4 and SiO2-Al2O3 ceramic cores, and the decreases of sintering shrinkage varied with the increasing amount of spherical particles. The native reaction of spherical particles on ceramic sintering is likely to relate to the residual quartz phase in spherical particles and the transformation to cristoballite phase. The additive of spherical particles had no significant influence with the further shrinkage at 1 500 ℃ of silica based ceramic cores.
Key words:  spherical particles    silica based ceramic core    sintering shrinkage    further sintering shrinkage
                    发布日期:  2019-06-19
ZTFLH:  TQ174.7  
  V254.2  
通讯作者:  wanglili201301@sina.cn   
作者简介:  王丽丽,高级工程师,2013年1月在北京科技大学获得材料科学与工程专业工学博士学位,现于中国航发北京航空材料研究院从事精密铸造铸型技术研究,开展涡轮叶片定向凝固用陶瓷型芯材料及应用研究、高温合金/陶瓷材料界面稳定性研究。以第一作者身份在国内外学术期刊上发表论文10余篇,申请国家发明专利4项。
引用本文:    
王丽丽, 姚建省, 许亮, 杨小薇, 顾国红, 李鑫, 牛书鑫. 熔融石英球形粉对陶瓷型芯高温收缩的影响[J]. 材料导报, 2019, 33(14): 2311-2314.
WANG Lili, YAO Jiansheng, XU Liang, YANG Xiaowei, GU Guohong, LI Xin, NIU Shuxin. Effect of Fused Silica Spherical Particles on Shrinkage Properties of Ceramic Cores. Materials Reports, 2019, 33(14): 2311-2314.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060123  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2311
1 Cao L M, Tang X, Zhang Y, et al. Journal of Aeronautical Materials,2006, 26(3),238(in Chinese).
曹腊梅, 汤鑫, 张勇,等. 航空材料学报,2006, 26(3),238.
2 Huseby I C,Borom M P,et al.American Ceramic Society Bulletin,1979,58(4),448.
3 Kim Y H, Yeo J G, Lee J S, et al.Ceramics International, 2016,42(13),14738.
4 Pan J Y, Liu X F, He L M, et al. China Foundry, 2012, 61(2), 174(in Chinese).
潘继勇, 刘孝福, 何立明, 等.铸造,2012, 61(2), 174.
5 韩绍娟, 许壮志, 程涛, 等. 中国专利, CN 200510047860. 1, 2005.
6 Mannschatz A, Müller A, Moritz T. Journal of the European Ceramic Society, 2011, 31,2551.
7 翁廷,周晚珠,曾克里, 等. 中国专利,CN201510915610.9, 2015.
8 Wang L L, Li J R, Tang D Z. Journal of Aeronautical Materials, 2015, 35(1),8(in Chinese).
王丽丽, 李嘉荣, 唐定中. 航空材料学报, 2015, 35(1),8.
9 Ji C J. China Powder Science and Technology, 2003, 9(1),36(in Chinese).
纪崇甲.中国粉体技术,2003,9(1),36.
10 Kazemia A, Faghihi-Sani M A, Nayyeria M J, et al. Ceramics International,2014, 40,1093.
[1] 赵钦, 马国政, 王海斗, 李国禄, 陈书赢, 刘明. 等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*[J]. 《材料导报》期刊社, 2017, 31(15): 60-67.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed