Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2728-2732    https://doi.org/10.11896/j.issn.1005-023X.2018.16.005
  无机非金属及其复合材料 |
掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料
王松林1, 徐向棋1, 陈子潘1, 孟广耀2
1 铜陵学院机械工程学院,铜陵 244061;
2 中国科学技术大学材料科学与工程系,合肥 230026
Alkaline-earth-metal-doped Binary Rare Earth Chromites (Pr0.5Nd0.5)0.7M0.3CrO3-δ (M=Sr, Ca): Novel Interconnect Materials for SOFC
WANG Songlin1, XU Xiangqi1, CHEN Zipan1, Meng Guangyao2
1 Department of Mechanical Engineering, Tongling University, Tongling 244061;
2 Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026
下载:  全 文 ( PDF ) ( 2505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用EDTA-柠檬酸法合成粉体,在1 400 ℃空气中烧结制备可用作固体氧化物燃料电池(SOFC)连接材料的两种掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7Sr0.3 CrO3-δ(PNSC)和(Pr0.5Nd0.5)0.7Ca0.3CrO3-δ(PNCC)复合稀土,借助粒度分析仪、热膨胀仪、X射线衍射仪、扫描电镜、四端子测量仪等对连接材料的粉体粒度、致密度、断面微结构、烧结性能、导电性能以及热膨胀性能进行了分析。结果表明,PNCC具有更优的烧结性能,致密化烧结温度区间为900~1 030 ℃,而PNSC的烧结收缩发生在1 250 ℃以上。PNCC在1 400 ℃烧结4 h达到97.2%的高致密度,而PNSC致密度只有76.5%,烧结性能与烧结过程中出现的CaCrO4或SrCrO4相有关。材料均遵从小极子导电机理,850 ℃下PNCC和PNSC的电导率分别达到50.4 S·cm-1和40.9 S·cm-1。PNCC的热膨胀系数为9.8×10-6 K-1,与YSZ电解质接近。因此,PNCC各项性能优于PNSC,是一种性能优良的固体氧化物燃料电池(SOFC)连接材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王松林
徐向棋
陈子潘
孟广耀
关键词:  固体氧化物燃料电池(SOFC)  连接材料  烧结性能  电导率  钙钛矿型铬酸盐    
Abstract: Using EDTA-pechini process to synthesize the primary powder, novel binary rare earth interconnect materials (Pr0.5Nd0.5)0.7Sr0.3CrO3-δ (PNSC) and (Pr0.5Nd0.5)0.7Ca0.3CrO3-δ (PNCC) for solid oxide fuel cells (SOFCs) were successfully prepared after sintering at 1 400 ℃ in air. The particle size distribution, sintering shrinkage, structure, morphologies, electrical conductivity and thermal expansion were characterized by laser particulate size description analyzer, thermal expansion dilatometer, X-ray diffraction, scanning electron microscopy and standard DC four-probe technique. The results indicate that PNCC has higher sintering ability than PNSC. The sintering shrinkage of PNCC mostly happens at the temperature range of 900 ℃ to 1 030 ℃, while the shrinkage of PNSC happens only above 1 250 ℃. The PNCC sample has a high relative density of 97.2% after sintered at 1 400 ℃ for 4 h, however, the PNSC sample only has a lower relative density of 76.5%. The obvious different sintering ability may relate to the second phases of CaCrO4 or SrCrO4, which appears during the sintering process of PNCC or PNSC. The electrical conductivities of PNSC and PNCC can reach up to 50.4 S·cm-1 and 40.9 S·cm-1, respectively, at 850 ℃ in air, and they both obey the theory of small polaron conduction. The thermal expansion coefficient (TEC) value of PNCC is 9.8×10-6 K-1, very close to that of YSZ. These investigations have indicated that PNCC, better than PNSC, is a promising interconnect material for SOFCs.
Key words:  solid oxide fuel cell (SOFC)    interconnect material    sintering performance    electrical conductivity    perovskite chromite
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TM911  
基金资助: 安徽高校自然科学研究重点项目(KJ2017A468);国家自然科学基金(51301122)
作者简介:  王松林:男,1973年生,博士,副教授,主要从事固体氧化物燃料电池关键材料研究 E-mail:wsl-hf@126.com
引用本文:    
王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
WANG Songlin, XU Xiangqi, CHEN Zipan, Meng Guangyao. Alkaline-earth-metal-doped Binary Rare Earth Chromites (Pr0.5Nd0.5)0.7M0.3CrO3-δ (M=Sr, Ca): Novel Interconnect Materials for SOFC. Materials Reports, 2018, 32(16): 2728-2732.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.005  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2728
1 Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics,2004,171(1-2):1.
2 Heidarpour A, Saidi A, Abbasi M H, et al. In situ fabrication mechanism of a dense Sr and Ca doped lanthanum chromite interconnect on Ni-YSZ anode of a solid oxide fuel cell during co-sintering [J]. Ceramics International,2013,39(2):1821.
3 Rendón-Angelesab J C, Yanagisawab K, Matamoros-Veloza Z, et al. Hydrothermal synthesis of perovskite strontium doped lanthanum chromite fine powders and its sintering [J]. Journal of Alloys and Compounds,2010,504(1):251.
4 Bian L Z, Wang L J, Chen Z Y, et al. Oxide coatings for solid oxide fuel cell metallic interconnects [J]. Rare Metal Material and Engineering,2016,45(11):3010(in Chinese).
卞刘振,王丽君,陈志远,等.涂层在固体氧化物燃料电池金属连接体中的应用[J].稀有金属材料与工程,2016,45(11):3010.
5 Shao Z P, Tadé M O. Intermediate-temperature solid oxide fuel cells: Materials and applications [M]. Berlin: Springer,2016:177.
6 Liu Y J, Ding X F, Gao L, et al. Effect of B-site doping on properties of La0.85Sr0.15CrO3 for solid oxide fuel cell interconnector [J]. Journal of Nanjing University of Technology (Natural Science Edition),2008,30(6):14(in Chinese).
刘颖佳,丁锡峰,高凌,等.B位掺杂对固体氧化物燃料电池连接材料La0.85Sr0.15CrO3性能的影响[J].南京工业大学学报(自然科学版),2008,30(6):14.
7 Liu M F, Zhao L, Dong D H, et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs [J]. Journal of Power Sources, 2008,177(2):451.
8 Zhou X L, Ma J J, Deng F J, et al. A high performance interconnecting ceramics for solid oxide fuel cells (SOFCs) [J]. Solid State Ionics,2007,177(39-40):3461.
9 Mori M, Itoh H, Yamamoto O, et al. Reaction mechanism between lanthanum manganite and yttria doped cubic zirconia [J]. Solid State Ionics,1999,123(1):113.
10 Wang S L, Wang J W, Wang D S, et al. Influence of Zn-doping on low-temperature sintering ability and electrical conductivity of YCrO3-based ceramic interconnect materials [J]. Transactions of Materials & Heat Treatment,2013,34(2):5(in Chinese).
王松林,王泾文,王东生,等.Zn掺杂对YCrO3基连接材料低温烧结和电导性能的影响[J].材料热处理学报,2013,34(2):5.
11 Li M, Chu X, Zhu W. Preparation and performance of Sm1-x-CaxCrO3-δ as new interconnect materials for IT-SOFC [J]. Rare Metal Materials and Engineering,2014,43(6):1337.
12 Shen Y, Liu M, He T,et al. A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ [J]. Journal of Power Sources,2010,195(4):977.
13 Zhong H H, Zhou X L, Liu X Q, et al. Synthesis and electrical conductivity of perovskite Gd1-xCaxCrO3(0≤x≤0.3) by auto-ignition process [J]. Solid State Ionics,2005,176(11-12):1057.
14 Liu J, Wang Y D. Extraction of praseodymium (Ⅲ) and neodymium (Ⅲ) in saponified P507-HCl-kerosene system [J]. CIESC Journal,2014,65(1):264(in Chinese).
刘晶,王运东.皂化P507-HCl-煤油体系萃取镨钕[J].化工学报,2014,65(1):264.
15 Liao H M, Luo L H, Wu Y F, et al. Synthesis of doped lanthanum chromite powder as SOFC interconnect [J]. Journal of Ceramics,2010,31(3):377(in Chinese).
廖花妹,罗凌虹,吴也凡,等.SOFC连接材料掺杂铬酸镧粉体的合成[J].陶瓷学报,2010,31(3):377.
16 Wang S L, Lin B, Chen Y H, et al. Low temperature sintering ability and electrical conductivity of SOFC interconnect material La0.7Ca0.3-Cr0.97O3 [J]. Journal of Alloys and Compounds,2009,468(1-2):499.
17 Chick L A, Liu J, Stevenson J W. Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite [J]. Journal of the American Ceramic Society,1997,80(8):2109.
18 Hofer H E, Kock W F. Crystal chemistry and thermal behavior in the La(Cr,Ni)O3 perovskite system [J]. Journal of the Electrochemical Society,1993,140(10):2889.
19 Weber W J, Griffin C W, Bates J L. Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3 [J]. Cheminform,1987,18(26):265.
20 Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Materials Science & Engineering A,2003,348:227.
21 Tao S W, Irvine J T S. Synthesis and characterization of (La0.75-Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs [J]. Journal of the Electrochemical Society,2004,151(2): A252.
[1] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[2] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[3] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[4] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[5] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[6] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[7] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[8] 刘元军, 刘国熠, 赵晓明. 滑石粉涂层复合材料的制备及其介电性能和电导率*[J]. 《材料导报》期刊社, 2017, 31(18): 28-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed