Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1671-1675    https://doi.org/10.11896/cldb.18020113
  金属与金属基复合材料 |
机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金
颜建辉1,2,3, 李凯玲1, 汪异1,2,3, 邱敬文1,2,3
1 湖南科技大学材料科学与工程学院,湘潭 411201
2 湖南科技大学高温耐磨材料及制备技术湖南省国防科技重点实验室, 湘潭 411201
3 湖南科技大学新能源储存与转换新进材料湖南省重点实验室,湘潭 411201
NbMoCrTiAl High-entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering
YAN Jianhui1,2,3, LI Kailing1, WANG Yi1,2,3, QIU Jingwen1,2,3
1 College of Materials Science and Technology, Hunan University of Science and Technology, Xiangtan 411201
2 Hunan Provincial Key Defense Laboratory of High Temperature Wear resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201
3 Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201
下载:  全 文 ( PDF ) ( 16658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了球磨转速、球料比和球磨时间对NbMoCrTiAl高熵合金粉末的物相、微观形貌及粒度的影响,探讨了不同温度下放电等离子烧结制备NbMoCrTiAl高熵合金微观组织和硬度的变化规律。结果表明:在转速300 r/min和球料比10∶1条件下,球磨60 h粉末只达到部分合金化;在转速300 r/min和球磨50 h时,球料比要达到12∶1才能实现粉末完全合金化;在球料比10∶1和球磨50 h条件下,球磨转速要高于400 r/min才能获得单一BCC固溶体高熵合金。NbMoCrTiAl粉末在高能球磨中元素发生合金化的先后顺序为Al→Ti→Cr→Nb→Mo。NbMoCrTiAl高熵合金粉末在放电等离子烧结(SPS)时发生了第二相析出和溶解转变。随着烧结温度的升高(1 400~1 600 ℃),第二相的数量减少及其尺寸增大,导致了合金硬度的降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜建辉
李凯玲
汪异
邱敬文
关键词:  高熵合金  NbMoCrTiAl  机械合金化  等离子烧结    
Abstract: The effects of ball milling speed, ball-to-powder ratio and milling duration on the phase, morphology and particle size of NbMoCrTiAl high entropy alloy powders were investigated. The microstructure and hardness of NbMoCrTiAl high-entropy alloys prepared at different spark plasma sintering temperatures were investigated. The results indicated that incomplete alloying of powders occurred at the rotational speed of 300 r/min, ball-to-powder ratio of 10∶1 and milling duration of 60 h. Only the ball-to-powder ratio reached 12∶1 under the milling conditions of 300 r/min and 50 h can complete alloying of powders be achieved. Moreover, NbMoCrTiAl high entropy alloy with single BCC solid solution could be obtained on condition that the ball milling speed exceeded 400 r/min, with the ball-to-powder ratio of 10∶1 and milling duration of 50 h. The alloying sequence of elements in NbMoCrTiAl high entropy alloy was Al→Ti→Cr→Nb→Mo. The precipitation and dissolution change of the second phases occurred in NbMoCrTiAl high entropy alloy during the SPS process. With the rising sintering temperature(1 400—1 600 ℃), the second phases presented a decrease in number and an increase in size, which leaded to the gradual reduction of hardness.
Key words:  entropy alloy    NbMoCrTiAl    mechanical alloying    spark plasma sintering
                    发布日期:  2019-05-16
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金(51475161)
通讯作者:  yanjianhui88@163.com   
作者简介:  颜建辉,湖南科技大学教授,博士研究生导师。2009年6月年获中南大学粉末冶金国家重点实验博士学位。在国内外学术期刊上发表论文60余篇,申请国家发明专利6项,其中授权4项。主要研究方向包括:新型高温结构材料研发、材料抗高温氧化防护、材料表面减摩耐磨技术、材料强韧化等。主持包括国家自然科学基金面上项目、湖南省自然科学基金、湖南省科技计划项目等。
引用本文:    
颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
YAN Jianhui, LI Kailing, WANG Yi, QIU Jingwen. NbMoCrTiAl High-entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials Reports, 2019, 33(10): 1671-1675.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020113  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1671
1 Wang S P, Xu J.Materials Science & Engineering C, 2017, 73,80.
2 Chen Y X, Zhu S, Wang X M, et al. Journal of Materials Engineering, 2017, 45(11), 129 (in Chinese).
陈永星, 朱胜, 王晓明, 等.材料工程, 2017, 45(11),129.
3 Fu X, Schuh C A, Olivetti E A.Scripta Materialia,2017,138,145.
4 Juan C C, Tsai M H, Tsai C W, et al. Intermetallics, 2015, 62, 76.
5 Senkov O N, Scott J M, Senkova S V, et al.Journal of Alloys & Compounds, 2011, 509(20),6043.
6 Chen H, Kauffmann A, Gorr B, et al.Journal of Alloys & Compounds, 2016, 661,206.
7 Senkov O N, Senkova S V, Miracle D B, et al.Materials Science & Engineering A, 2013, 565(5),51.
8 Senkov O N, Miracle D B.Journal of Alloys & Compounds, 2016, 658(1),603.
9 Gao M C, Carney C S, DoğanÖ N , et al. JOM, 2015, 67(11),2653.
10 Ji W, Wang W, Wang H, et al. Intermetallics, 2015, 56,24.
11 Kumar D, Maulik O, Bagri A S, et al. Materials Today Proceedings, 2016, 3(9),2926.
12 Sulikowska K, SkaLań M, Kozub B, et al.Surface & Coatings Techno-logy, 2016, 302,142.
13 Chen Z, Lu W, Yan B. Metallic Functional Materials, 2012(3),51 (in Chinese).
陈哲, 陆伟, 严彪. 金属功能材料,2012(3),51.
14 Yuanyin M Y, Peng K, Wang H P, et al. Materials Review B:Research Papers, 2016,30 (8), 69 (in Chinese).
袁尹明月, 彭坤, 王海鹏, 等. 材料导报:研究篇,2016,30 (8),69.
15 Choi J, Sung H M, Roh K B,et al. International Journal of Refractory Metals & Hard Materials, 2017, 69,164.
16 Feng H B, Zhou Y, Jia D C.Material Science & Technology, 2003 (3), 327 (in Chinese).
冯海波, 周玉, 贾德昌.材料科学与工艺,2003(3), 327.
17 Yang C, Zhu M D, Luo X, et al.Scripta Materialia,2017,139, 96.
18 Byungchul Kang, Junho Lee, Ho Jin Ryu, et al. Materials Science and Engineering:A, 2018, 712, 616.
19 Varalakshmi S, Kamaraj M, Murty B S.Materials Science and Engineering A, 2010, 527, 1027.
20 Wang H, Zhan Y, Zhou W.Journal of Phase Equilibria & Diffusion, 2013, 34(4),322.
21 Cupid D.Dissertations & Theses-Gradworks, 2009, 61(Suppl 1),75.
22 He C, Stein F.International Journal of Materials Research, 2010, 101(11),1369.
[1] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[4] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[5] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[6] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[7] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[8] 郭亚雄,刘其斌,尚晓娟,徐鹏,周芳. CoCrFeNi-M系高熵合金的结构与相变[J]. 《材料导报》期刊社, 2018, 32(1): 122-127.
[9] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[10] 朱刚, 陈家林, 贾海龙, 刘颖, 谢明. Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 125-128.
[11] 温鑫, 金国, 庞学佳, 蔡召兵, 张子晗, 崔秀芳, 王海斗, 徐滨士. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 79-83.
[12] 任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed