Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 79-83    https://doi.org/10.11896/j.issn.1005-023X.2017.012.017
  材料研究 |
热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*
温鑫1, 金国1, 庞学佳2, 蔡召兵1, 张子晗1, 崔秀芳1, 王海斗1,3, 徐滨士3
1 哈尔滨工程大学材料科学与化学工程学院,腐蚀科学与表面技术研究所, 哈尔滨 150001;
2 中国船舶重工集团公司703研究所, 哈尔滨 150078;
3 装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072
Effect of Heat Treatment on Microstructure and Corrosion Resistance of NiCrCoTiV High-entropy Alloy Prepared by Vacuum Hot-pressing Sintering
WEN Xin1, JIN Guo1, PANG Xuejia2, CAI Zhaobing1, ZHANG Zihan1, CUI Xiufang1, WANG Haidou1,3, XU Binshi3
1 Institute of Corrosion Science and Surface Technology, School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001;
2 The 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150078;
3 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空热压烧结技术制备了NiCrCoTiV高熵合金,并分别在500 ℃、600 ℃和700 ℃下对高熵合金进行18 h保温热处理。采用X射线衍射仪、扫描电子显微镜、电化学测试系统研究了不同热处理温度对高熵合金物相结构、微观组织及耐腐蚀性能的影响。结果表明,高熵合金的物相组成在不同温度热处理后均未发生明显改变,表现出良好的热稳定性。热处理后,高熵合金晶粒细化,析出相减少;热处理温度越高,晶粒细化效果越好。相比于未热处理的试样,热处理后试样的耐腐蚀性能明显提高,并且随热处理温度升高,耐腐蚀性能呈上升趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温鑫
金国
庞学佳
蔡召兵
张子晗
崔秀芳
王海斗
徐滨士
关键词:  高熵合金  热处理  微观组织  耐蚀性    
Abstract: The NiCrCoTiV high-entropy alloy was prepared by vacuum hot-pressing sintering and heated at 500 ℃, 600 ℃ and 700 ℃ for 18 h, respectively. The effects of different heat-treatments on the phase, microstructure and corrosion-resisting of the NiCrCoTiV high-entropy alloy were studied in detail by X-ray diffraction, scanning electron microscopy and electrochemical workstation. The experiment results show that after different heat-treatment, the phase of high-entropy alloy did not change significantly, showing excellent high temperature stability. After heat-treatment, the grains of high-entropy alloy are refined and the precipitation phase is reduced. With the increase of heat-treatment temperature, the grain size gradually decreases. After heat-treatment, the corrosion resistance of high-entropy alloy gets a great increase. In addition, the corrosion resistance of the high-entropy alloy increases with the heat-treatment temperature rises.
Key words:  high-entropy alloy    heat treated    microstructure    corrosion resistance
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG174.2  
基金资助: *国家自然科学基金(51575118;51375106);中央高校基金重大培育计划(HEUCFP-2016154)
通讯作者:  金国:通讯作者,男,1977年生,博士,教授,博士研究生导师,主要研究方向为表面工程 E-mail:jinguo@hrbeu.edu.cn   
作者简介:  温鑫:男,1993年生,硕士研究生,主要研究方向为激光表面改性技术 E-mail:2012105124@hrbeu.edu.cn
引用本文:    
温鑫, 金国, 庞学佳, 蔡召兵, 张子晗, 崔秀芳, 王海斗, 徐滨士. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 79-83.
WEN Xin, JIN Guo, PANG Xuejia, CAI Zhaobing, ZHANG Zihan, CUI Xiufang, WANG Haidou, XU Binshi. Effect of Heat Treatment on Microstructure and Corrosion Resistance of NiCrCoTiV High-entropy Alloy Prepared by Vacuum Hot-pressing Sintering. Materials Reports, 2017, 31(12): 79-83.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.017  或          http://www.mater-rep.com/CN/Y2017/V31/I12/79
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater,2004,6(5):299.
2 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater,2004,6(1-2):74.
3 Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Commun,2015,6:7748.
4 Shon Y, Joshi S S, Katakam S, et al. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior[J]. Mater Lett,2015,142:122.
5 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progr Mater Sci,2014,61(8):1.
6 Wen L H, Kou H C, Li J S, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy[J]. Intermetallics,2009,17(4):266.
7 Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature,2016,534:227.
8 Shi Y, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review[J]. Metals,2017,7(2):43.
9 Lu Y, Dong Y, Guo S, et al. A promising new class of high-tem-perature alloys: Eutectic high-entropy alloys[J]. Sci Rep,2014,4:6200.
10 Zhang Y, Qiao J. A brief review of high entropy alloys and serration behavior and flow units[J]. J Iron Steel Res Int,2016,23(1):2.
11 Ranganathan S. Alloyed pleasures: Multimetallic cocktails[J]. Current Sci,2003,85(5):1404.
12 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metall Mater Trans A,2004,35(8):2533.
13 Prasad H, Singh S, Panigrahi B B. Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy[J]. J Alloys Compd,2017,692:720.
14 He F, Wang Z, Wu Q, et al. Phase separation of metastable CoCr-FeNi high entropy alloy at intermediate temperatures[J]. Scripta Mater,2017,126:15.
15 Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3, high-entropy alloy by Bridgman solidification[J]. Intermetallics,2014,54(6):104.
16 Dong Y, Lu Y, Kong J, et al. Microstructure and mechanical pro-perties of multi-component AlCrFeNiMox, high-entropy alloys[J]. J Alloys Compd,2013,573(10):96.
17 Liu Y, Ma S, Gao M C, et al. Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions[J]. Metall Mater Trans A,2016,47(7):3312.
18 张勇. 非晶和高熵合金[M]. 北京:科学出版社,2010.
19 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater,2016,122:448.
20 Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metall Mater Trans A,2016,47(12):5871.
21 Zhu Z G, Ma K H, Wang Q, et al. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys[J]. Intermetallics,2016,79:1.
22 Tsai D C, Shieu F S, Chang S Y, et al. Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers[J]. J Electrochem Soc,2010,157(3):K52.
23 Varalakshmi S, Kamaraj M, Murty B S. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying[J]. Metall Mater Trans A,2010,41(10):2703.
24 Durga A, Kumar K C H, Murty B S. Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies[J]. Trans Indian Institute of Metals,2012,65(4):375.
25 Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater,2017,124:143.
26 Zhang S, Wu C L, Zhang C H. Phase evolution characteristics of FeCoCrAlCuVx Ni high entropy alloy coatings by laser high-entropy alloying[J]. Mater Lett,2015,141:7.
27 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCu-TiNix high-entropy alloys prepared by laser cladding[J]. J Alloys Compd,2013,553:216.
28 Cai Z, Jin G, Cui X, et al. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering[J]. Vacuum,2016,124:5.
29 Tsai M H, Yeh J W. High-entropy alloys: A critical review[J]. Mater Res Lett,2014,2(3):107.
30 Zhang S, Wu C L, Yi J Z, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surf Coat Technol,2015,262:64.
31 Cai Z, Jin G, Cui X, et al. Synthesis and microstructure characteri-zation of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying[J]. Mater Character,2016,120:229.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[8] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[9] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[10] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[11] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[14] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[15] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed