Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 79-83    https://doi.org/10.11896/j.issn.1005-023X.2017.012.017
  材料研究 |
热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*
温鑫1, 金国1, 庞学佳2, 蔡召兵1, 张子晗1, 崔秀芳1, 王海斗1,3, 徐滨士3
1 哈尔滨工程大学材料科学与化学工程学院,腐蚀科学与表面技术研究所, 哈尔滨 150001;
2 中国船舶重工集团公司703研究所, 哈尔滨 150078;
3 装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072
Effect of Heat Treatment on Microstructure and Corrosion Resistance of NiCrCoTiV High-entropy Alloy Prepared by Vacuum Hot-pressing Sintering
WEN Xin1, JIN Guo1, PANG Xuejia2, CAI Zhaobing1, ZHANG Zihan1, CUI Xiufang1, WANG Haidou1,3, XU Binshi3
1 Institute of Corrosion Science and Surface Technology, School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001;
2 The 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150078;
3 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空热压烧结技术制备了NiCrCoTiV高熵合金,并分别在500 ℃、600 ℃和700 ℃下对高熵合金进行18 h保温热处理。采用X射线衍射仪、扫描电子显微镜、电化学测试系统研究了不同热处理温度对高熵合金物相结构、微观组织及耐腐蚀性能的影响。结果表明,高熵合金的物相组成在不同温度热处理后均未发生明显改变,表现出良好的热稳定性。热处理后,高熵合金晶粒细化,析出相减少;热处理温度越高,晶粒细化效果越好。相比于未热处理的试样,热处理后试样的耐腐蚀性能明显提高,并且随热处理温度升高,耐腐蚀性能呈上升趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温鑫
金国
庞学佳
蔡召兵
张子晗
崔秀芳
王海斗
徐滨士
关键词:  高熵合金  热处理  微观组织  耐蚀性    
Abstract: The NiCrCoTiV high-entropy alloy was prepared by vacuum hot-pressing sintering and heated at 500 ℃, 600 ℃ and 700 ℃ for 18 h, respectively. The effects of different heat-treatments on the phase, microstructure and corrosion-resisting of the NiCrCoTiV high-entropy alloy were studied in detail by X-ray diffraction, scanning electron microscopy and electrochemical workstation. The experiment results show that after different heat-treatment, the phase of high-entropy alloy did not change significantly, showing excellent high temperature stability. After heat-treatment, the grains of high-entropy alloy are refined and the precipitation phase is reduced. With the increase of heat-treatment temperature, the grain size gradually decreases. After heat-treatment, the corrosion resistance of high-entropy alloy gets a great increase. In addition, the corrosion resistance of the high-entropy alloy increases with the heat-treatment temperature rises.
Key words:  high-entropy alloy    heat treated    microstructure    corrosion resistance
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG174.2  
基金资助: *国家自然科学基金(51575118;51375106);中央高校基金重大培育计划(HEUCFP-2016154)
通讯作者:  金国:通讯作者,男,1977年生,博士,教授,博士研究生导师,主要研究方向为表面工程 E-mail:jinguo@hrbeu.edu.cn   
作者简介:  温鑫:男,1993年生,硕士研究生,主要研究方向为激光表面改性技术 E-mail:2012105124@hrbeu.edu.cn
引用本文:    
温鑫, 金国, 庞学佳, 蔡召兵, 张子晗, 崔秀芳, 王海斗, 徐滨士. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 79-83.
WEN Xin, JIN Guo, PANG Xuejia, CAI Zhaobing, ZHANG Zihan, CUI Xiufang, WANG Haidou, XU Binshi. Effect of Heat Treatment on Microstructure and Corrosion Resistance of NiCrCoTiV High-entropy Alloy Prepared by Vacuum Hot-pressing Sintering. Materials Reports, 2017, 31(12): 79-83.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.017  或          https://www.mater-rep.com/CN/Y2017/V31/I12/79
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater,2004,6(5):299.
2 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater,2004,6(1-2):74.
3 Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Commun,2015,6:7748.
4 Shon Y, Joshi S S, Katakam S, et al. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior[J]. Mater Lett,2015,142:122.
5 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progr Mater Sci,2014,61(8):1.
6 Wen L H, Kou H C, Li J S, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy[J]. Intermetallics,2009,17(4):266.
7 Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature,2016,534:227.
8 Shi Y, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review[J]. Metals,2017,7(2):43.
9 Lu Y, Dong Y, Guo S, et al. A promising new class of high-tem-perature alloys: Eutectic high-entropy alloys[J]. Sci Rep,2014,4:6200.
10 Zhang Y, Qiao J. A brief review of high entropy alloys and serration behavior and flow units[J]. J Iron Steel Res Int,2016,23(1):2.
11 Ranganathan S. Alloyed pleasures: Multimetallic cocktails[J]. Current Sci,2003,85(5):1404.
12 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metall Mater Trans A,2004,35(8):2533.
13 Prasad H, Singh S, Panigrahi B B. Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy[J]. J Alloys Compd,2017,692:720.
14 He F, Wang Z, Wu Q, et al. Phase separation of metastable CoCr-FeNi high entropy alloy at intermediate temperatures[J]. Scripta Mater,2017,126:15.
15 Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3, high-entropy alloy by Bridgman solidification[J]. Intermetallics,2014,54(6):104.
16 Dong Y, Lu Y, Kong J, et al. Microstructure and mechanical pro-perties of multi-component AlCrFeNiMox, high-entropy alloys[J]. J Alloys Compd,2013,573(10):96.
17 Liu Y, Ma S, Gao M C, et al. Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions[J]. Metall Mater Trans A,2016,47(7):3312.
18 张勇. 非晶和高熵合金[M]. 北京:科学出版社,2010.
19 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater,2016,122:448.
20 Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metall Mater Trans A,2016,47(12):5871.
21 Zhu Z G, Ma K H, Wang Q, et al. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys[J]. Intermetallics,2016,79:1.
22 Tsai D C, Shieu F S, Chang S Y, et al. Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers[J]. J Electrochem Soc,2010,157(3):K52.
23 Varalakshmi S, Kamaraj M, Murty B S. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying[J]. Metall Mater Trans A,2010,41(10):2703.
24 Durga A, Kumar K C H, Murty B S. Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies[J]. Trans Indian Institute of Metals,2012,65(4):375.
25 Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater,2017,124:143.
26 Zhang S, Wu C L, Zhang C H. Phase evolution characteristics of FeCoCrAlCuVx Ni high entropy alloy coatings by laser high-entropy alloying[J]. Mater Lett,2015,141:7.
27 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCu-TiNix high-entropy alloys prepared by laser cladding[J]. J Alloys Compd,2013,553:216.
28 Cai Z, Jin G, Cui X, et al. Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering[J]. Vacuum,2016,124:5.
29 Tsai M H, Yeh J W. High-entropy alloys: A critical review[J]. Mater Res Lett,2014,2(3):107.
30 Zhang S, Wu C L, Yi J Z, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surf Coat Technol,2015,262:64.
31 Cai Z, Jin G, Cui X, et al. Synthesis and microstructure characteri-zation of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying[J]. Mater Character,2016,120:229.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[4] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[5] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[10] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[11] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[12] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[13] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[14] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed