Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 122-127    https://doi.org/10.11896/j.issn.1005-023X.2018.01.015
     材料综述 |
CoCrFeNi-M系高熵合金的结构与相变
郭亚雄1(),刘其斌1,2,尚晓娟1,徐鹏1,周芳1
1 贵州大学材料与冶金学院,贵阳 550025
2 贵州省材料结构与强度重点实验室,贵阳 550025
Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems
Yaxiong GUO1(),Qibin LIU1,2,Xiaojuan SHANG1,Peng XU1,Fang ZHOU1
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025
2 Guizhou Province Key Laboratory of Materials Structure and Strength, Guiyang 550025
下载:  全 文 ( PDF ) ( 819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

高熵合金作为金属材料领域近年来的三大突破之一,其开拓性地打破了传统合金设计理念的思想囚笼,适当配比的高熵合金可制得具有高强度、高耐磨性及耐蚀性等优异性能的合金材料。Fe、Co、Cr、Ni四种元素在高熵合金体系中研究得最为广泛,并得到一定的研究成果。从CoCrFeNi-M系高熵合金的结构与相变特点切入,介绍了高熵合金的结构分类特点,分析了高熵合金相形成及其规律,阐述了合金元素对铸态高熵合金相结构的影响,探讨了高熵合金的热处理过程。最后,总结了高熵合金的研究现状及其存在的问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭亚雄
刘其斌
尚晓娟
徐鹏
周芳
关键词:  高熵合金  CoCrFeNi  结构  相变    
Abstract: 

High-entropy alloys, one of the three breakthroughs of metallic materials field in recent years, dash out the cage of traditional design concept about alloys, and could produce alloy materials with high strength, excellent wear resistance and anti-corrosion in proper proportion. The four elements of Fe, Co, Cr, Ni have been widely applied in the high-entropy alloys systems and gained a number of outstanding achievements. This paper demonstrate the feature of structures and transitions in CoCrFeNi-M high-entropy alloy systems. Furthermore, the effect of alloying elements on as-cast high-entropy alloys are illustrated, the heat treatment processes of high-entropy alloys are discussed. Finally, the current research status and existing problems of high entropy alloys are summarized.

Key words:  high-entropy alloys    CoCrFeNi    microstructure    phase transition
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG14  
基金资助: 国家自然科学基金面上项目(51671061);贵州省高层次创新型人才培养(黔科合人才20154009);贵州省工业攻关项目(黔科合GZ字20153022);贵州省科技计划项目(黔科合基础20161024)
作者简介:  郭亚雄:男,1991年生,博士研究生,主要从事激光制备先进材料的研究 E-mail: 18798010700@163.com
引用本文:    
郭亚雄,刘其斌,尚晓娟,徐鹏,周芳. CoCrFeNi-M系高熵合金的结构与相变[J]. 《材料导报》期刊社, 2018, 32(1): 122-127.
Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems. Materials Reports, 2018, 32(1): 122-127.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.015  或          https://www.mater-rep.com/CN/Y2018/V32/I1/122
  
  
  
  
[1] Yeh J W, Chen S K, Lin S J , et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299.
[2] Tong C J, Chen M R, Yeh J W , et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005,36(5):1263.
[3] Tsai M H, Yeh J W . High-entropy alloys: A critical review[J]. Materials Research Letters, 2014,2(3):107.
[4] Liu L . Effect of alloying elements on microstructure and mechanical properties of high entropy alloys[D]. Changchun: Jilin University, 2012(in Chinese).
[4] 刘亮 . 合金元素对高熵合金组织与性能的影响[D]. 长春:吉林大学, 2012.
[5] Miracle D B, Senkov O N . A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2016,122:448.
[6] Tung C C, Yeh J W, Shun T T , et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007,61(1):1.
[7] Lee C P, Chang C C, Chen Y Y , et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behavior in aqueous environments[J]. Corrosion Science, 2008,50:2053.
[8] Wang Y F, Yang H Y . Evolution of microstructure of AlCoCrFeNiTi0.5 high-entropy alloys in the process of solidification[J].Rare Metal Materials and Engineering, 2014(10):2459(in Chinese).
[8] 王毅飞, 杨海彧 . 凝固过程中AlCoCrFeNiTi0.5高熵合金的组织结构演变[J].稀有金属材料与工程, 2014(10):2459.
[9] Wang X F, Zhang Y, Qiao Y , et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys[J]. Intermetallics, 2007,15(3):357.
[10] Zhang L, , Preparation of high entropy alloys and their structure and properties[D]. Changchun: Jilin University, 2012(in Chinese).
[10] 张力 . 高熵合金的制备及组织与性能[D]. 长春:吉林大学, 2007.
[11] Dong Y, , Fundamental study on microstructure and mechanical properties in multi-phase Al-Cr-Fe-Ni-M high entropy alloys[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
[11] 董勇 . Al-Cr-Fe-Ni-M系多相高熵合金微观组织与力学性能的基础研究[D]. 大连:大连理工大学, 2016.
[12] CantorB, Chang I T H, Knight P, et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A , 2004, 375-377:213.
[13] VaralakshmiS, Kamaraj M, Murty B S . Synjournal and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys and Compounds, 2008,460(1-2):253.
[14] SenkovO N, Wilks G B, Scott J M , et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011,19(5):698.
[15] YaoH W, Qiao J W, Hawk J A , et al. Mechanical properties of refractory high-entropy alloys: Experiments and modeling[J]. Journal of Alloys and Compounds, 2016,696:1139.
[16] LuY, Dong Y, Guo S , et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Scientific Reports, 2014,4:6200.
[17] JiangL. Microstructure evolution and mechanical properties of CoFeNiV(Mo, Nb) high entropy alloys[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
[17] 蒋丽 . CoFeNiV(Mo,Nb)高熵合金的组织演变及力学性能研究[D]. 大连:大连理工大学, 2016.
[18] LuY, Gao X, Jiang L , et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017,124:143.
[19] LiuJ, Chen C, Xu Y , et al. Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-situ, TEM study[J]. ScriptaMaterialia, 2017,137:9.
[20] ZhaoR F, Li H J, Ren B , et al. Microstructure and properties of AlCrMnMoNiZrB0.1 high entropy alloys prepared by powder metallurgy process Special Casting and Nonferrous Alloys, 2013,33(3):288(in Chinese).
[20] 赵瑞锋, 李红菊, 任波 , 等. 粉末冶金制备AlCrMnMoNiZrB0.1合金的组织与性能[J]. 特种铸造及有色合金, 2013,33(3):288.
[21] ZhangS F, Yang X, Zhang Y . Processing and properties of AlCrCuFeNi single crystal high entropy alloy Acta Metallurgical Sinica, 2013,49(11):1473(in Chinese).
[21] 张素芳, 杨潇, 张勇 , 等. AlCrCuFeNi高熵合金单晶材料的制备及性能[J]. 金属学报, 2013,49(11):1473.
[22] YaoC Z, Zhang P, Liu M , et al. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy[J]. Electrochimica Acta, 2008,53(28):8359.
[23] LaiC H, Lin S J, Yeh J W , et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface and Coatings Technology, 2006,201(6):3275.
[24] FuZ, Chen W, Fang S , et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering[J]. Journal of Alloys and Compounds, 2013,553(3):316.
[25] NiuX L, Wang L J, Sun D . Research on corrosion resistance of Al-Fe-Co-Cr-Ni-Cu high-entropy alloy coating by electron beam evaporation plating Journal of Dalian University of Technology, 2013,53(5):689(in Chinese).
[25] 牛雪莲, 王立久, 孙丹 , 等. 电子束蒸发沉积Al-Fe-Co-Cr-Ni-Cu高熵合金涂层耐蚀性研究[J]. 大连理工大学学报, 2013,53(5):689.
[26] MaM X, Liu Y X, Gu Y , et al. Synjournal of AlxCoCrNiMo high entropy alloy coatings by laser cladding Applied Laser, 2010,30(6):433(in Chinese).
[26] 马明星, 柳沅汛, 谷雨 , 等. 激光制备AlxCoCrNiMo高熵合金涂层的研究[J]. 应用激光, 2010,30(6):433.
[27] HaaseC, Tang F, Wilms M B , et al. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design[J]. Materials Science and Engineering A, 2017,688:180.
[28] ZhangY, Zuo T T, Tang Z , et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61(8):1.
[29] TsaiK Y, Tsai M H, Yeh J W . Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013,61(13):4887.
[30] ShunT T, Hung C H, Lee C F . The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ℃[J]. Journal of Alloys and Compounds, 2010,495(1):55.
[31] WuY D, Cai Y H, Chen X H , et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys[J]. Materials and Design, 2015,83:651.
[32] QiuX W, Zhang Y P, He L , et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013,549(2):195.
[33] MaD, Yao M, Pradeep K G , et al. Phase stability of non-equiatomicCoCrFeMnNi high entropy alloys[J]. Acta Materialia, 2015,98:288.
[34] TakeuchiA, Amiya K, Wada T , et al. Dual HCP structures formed in senaryScYLaTiZrHf multi-principal-element alloy[J]. Inter-metallics, 2016,69:103.
[35] ZhaoY J, Qiao J W, Ma S G , et al. A hexagonal close-packed high-entropy alloy:The effect of entropy[J]. Materials and Design, 2016,96:10.
[36] FuZ, Chen W, Wen H , et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J]. Acta Materialia, 2016,107:59.
[37] TongC J, Chen Y L, Yeh J W , et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005,36(4):881.
[38] YuP F, Cheng H, Zhang L J , et al. Nanotwin’s formation and growth in an AlCoCuFeNi high-entropy alloy[J]. ScriptaMaterialia, 2016,114:31.
[39] GuoS, Ng C, Lu J , et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011,109(10):645.
[40] RenM X, Li B S , Phase analysis of CrFeCoNiCu high entropy alloy[J].Materials Engineering, 2012(1):9(in Chinese).
[40] 任明星, 李邦盛 . CrFeCoNiCu多主元高熵合金的相分析[J]. 材料工程, 2012(1):9.
[41] 41张勇 . 非晶和高熵合金[M]. 北京: 科学出版社, 2010.
[42] WangW R, Wang W L, Yeh J W . Phases, microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014,589(9):143.
[43] MaS G, Zhang Y . Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering A, 2012,532(1):480.
[44] StepanovN D, Yurchenko N Y, Tikhonovsky M A , et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys[J]. Journal of Alloys and Compounds, 2016,687:59.
[45] LiuJ D . Microstructure and mechanism of in-situ synthesis of reinforcing phase in TiC/AlCrFeNi-M high-entropy alloy based composites[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese).
[45] 刘俊东 . TiC/AlCrFeNi-M系高熵合金基复合材料显微组织及原位自生机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
[46] LiA M, Zhang X Y, Liu L L , et al. Effect of annealing on microstructure and properties of AlCrFeCoNiCu high-entropy alloy Materials for Mechanical Engineering, 2012,36(7):14(in Chinese).
[46] 李安敏, 张喜燕, 刘乐林 , 等. 退火对AlCrFeCoNiCu高熵合金组织与性能的影响[J]. 机械工程材料, 2012,36(7):14.
[47] LiW, Liu G Z, Guo J J . Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys Special Casting and Nonferrous Alloys, 2009,29(10):941(in Chinese).
[47] 李伟, 刘贵仲, 郭景杰 . AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能[J]. 特种铸造及有色合金, 2009,29(10):941.
[48] PickeringE J, Mu?oz-Moreno R, Stone H J , et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi[J]. ScriptaMaterialia, 2016,113:106.
[49] PickeringE J, Stone H J, Jones N G . Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu[J]. Materials Science and Engineering A, 2015,645:65.
[50] WengZ Q, Dong G, Zhang Q L , et al. Effect of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by Laser cladding Chinese Journal of Laser, 2014,41(3):59(in Chinese).
[50] 翁子清, 董刚, 张群莉 , 等. 退火对激光熔覆FeCrNiCoMn高熵合金涂层组织与性能的影响[J]. 中国激光, 2014,41(3):59.
[51] ZhangH, Pan Y, He Y Z . Laser cladding FeCoNiCrAl2Si high-entropy alloy coating Acta Metallurgical Sinica, 2011,47(8):1075(in Chinese).
[51] 张晖, 潘冶, 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011,47(8):1075.
[52] AnXulong, Liu Qibin, Zheng Bo . Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating Infrared and Laser Engineering, 2014,43(4):1140.
[52] 安旭龙, 刘其斌, 郑波 . 激光熔覆制备高熵合金MoFeCrTiWAlxSiy涂层的组织与性能[J]. 红外与激光工程, 2014,43(4):1140.
[53] Zhouu Fang, Liu Qibin, Zheng Bo . Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating High Power Laser and Particle Beams, 2015,27(11):266.
[53] 周芳, 刘其斌, 郑波 . Si,Al对激光熔覆MoFeCrTiW高熵合金涂层组织性能的影响[J]. 强激光与粒子束, 2015,27(11):266.
[1] 杨鸿睿, 刘洪蕊, 王结良, 祖梅, 徐遨蓝. 大跨度伪装遮障材料技术研究进展[J]. 材料导报, 2025, 39(3): 23110159-6.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[9] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[10] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[11] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[12] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[13] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[14] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[15] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed