Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22120148-6    https://doi.org/10.11896/cldb.22120148
  金属与金属基复合材料 |
Al-Zn体系高压扭转过程中的相变机理
陈琛1,2, 陈昱林3, 苏璇1,2, 卢璟钰1,2, 于俊杰1,2, 张建1,2, 吉卫喜1,2,*
1 江南大学机械工程学院,江苏 无锡 214122
2 江南大学江苏省食品制造装备重点实验室,江苏 无锡 214122
3 江苏大学材料科学与工程学院,江苏 镇江 212013
Phase Transformation Mechanism of Al-Zn System During High Pressure Torsion
CHEN Chen1,2, CHEN Yulin3, SU Xuan1,2, LU Jingyu1,2, YU Junjie1,2, ZHANG Jian1, JI Weixi1,2,*
1 Department of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
3 School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
下载:  全 文 ( PDF ) ( 10041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作对常温不互溶的Al-Zn体系进行了高压扭转下的机械合金化研究。将0.03 mm厚的纯Al和纯Zn交替堆叠,在3 GPa的压力下进行50圈的高压扭转处理。结果表明,高压扭转处理的Al-Zn合金中产生两种类型的相变,即晶体到非晶的相变,以及密排六方到面心立方的相变。局部高密度位错可能是 Al-Zn 合金从晶态转变到非晶态的主要原因,而HCP→FCC相变则归因为密排面原子沿晶界产生的Shockley 不全位错的滑动。此外,本工作为深入研究Al-Zn合金的固态相变提供了一种新的途径,为提高铝锌合金的力学性能提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈琛
陈昱林
苏璇
卢璟钰
于俊杰
张建
吉卫喜
关键词:  高压扭转  机械合金化  相变  铝锌合金    
Abstract: In this work, the mechanical alloying of the immiscible Al-Zn system at room temperature under high pressure torsion was studied. Mechanical alloying via high pressure torsion (HPT) was studied for the immiscible Al-Zn system at room temperature. Stacks of alternating 0.3 mm thick sheets of pure Al and Zn were subjected to HPT processing at a pressure of 3 GPa for 50 revolutions. The results show that two phase transformation occurred in the Al-Zn alloy after HPT process, the phase transformation from crystal to amorphous, and the phase transition from hexagonal close-packed to face-centered cubic. High local dislocation density may primarily accounted for the crystalline-to-amorphous transformation in Al-Zn alloy and the phase transformation is attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries. Moreover, this work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys. It may also shed lights on improving the mechanical properties of the HPT processed Al-Zn alloys.
Key words:  high-pressure torsion    mechanical alloying    phase transformation    Al-Zn alloy
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TH142.3  
基金资助: 山东省重大科技创新工程基金项目(2019JZZY020111)
通讯作者:  * 吉卫喜,江南大学机械工程学院教授、博士研究生导师。1983年江苏理工大学机械工程专业本科毕业,1989年江苏大学机械制造及其自动化专业硕士毕业,2002年南京航空航天大学机械电子工程专业博士毕业。主要从事产品数字化设计与制造、先进制造技术、数字化智能化制造技术与系统方面的科学研究与产品开发工作。已发表论文30多篇,主编国家级教材3部,研究生教材1部。ji_weixi@126.com   
作者简介:  陈琛,2010年6月、2018年6月分别于江苏大学和江南大学获得工学学士学位和硕士学位。现为江南大学机械工程学院博士研究生,在吉卫喜教授的指导下进行研究。目前主要研究领域为智能化材料及数字化智能制造。
引用本文:    
陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
CHEN Chen, CHEN Yulin, SU Xuan, LU Jingyu, YU Junjie, ZHANG Jian, JI Weixi. Phase Transformation Mechanism of Al-Zn System During High Pressure Torsion. Materials Reports, 2024, 38(9): 22120148-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120148  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22120148
1 Han Z Y, Huang X G,Yang Z C. Materials, 2019, 12(9),1520.
2 Li Q L, Ma X D, Zhang X Y, et al. Materials Letters, 2022, 308, 131208.
3 Chuvil'deev V N, Nokhrin A V, Kopylov V I, et al. Journal of Alloys and Compounds, 2022, 891, 162110.
4 Chinh N Q, Csanadi T, Gubicza J, et al. MRS Communications, 2019, 9(1), 310.
5 Reda Y, Yehia H M, El-Shamy A M. Egyptian Journal of Petroleum, 2022, 31(1), 9.
6 Liu C, Li Y, Ge Q Q, et al. Materials Letters, 2021, 300, 130181.
7 Wu S H, Soreide H S, Chen B, et al. Nature Communications, 2022, 13(1), 3495.
8 Wang X X,Zhang X, Jing X Y, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(10), 2613.
9 Hernández-Escobar D, Marcus J, Han J K, et al. Materials Science and Engineering: A, 2020, 771.
10 Oh-ishi K, Edalati K, Kim H S, et al. Acta Materialia, 2013, 61(9), 3482.
11 Mousavi T, Dai J Y, Bazarnik P, et al. Journal of Alloys and Compounds, 2020, 832, 155007.
12 Yadav D, Bauri R, Chawake N. Materials Characterization, 2018, 136, 221.
13 Shimono M, Tsuchiya K, Onodera H. Materials Transactions, 2013, 54, (9), 1575.
14 Wei B Q, Ni S, Liu Y, et al. Journal of Materials Science & Technology, 2020, 49, 211.
15 Wei B Q, Ni S, Liu Y, et al. Scripta Materialia, 2019, 169, 46.
16 Edalati K, Horita Z, Valiev R Z. Scientific Reports, 2018, 8(1), 6740.
17 Song Z Z, Niu R M, Cui X Y, et al. Scripta Materialia, 2022, 210, 114423.
18 Liu Y F, Yin F X, Yu H, et al. Materials Science and Engineering A, 2022, 840,142911.
19 Sun Y F, Rong Z Y, Guan S K. Materials Letters, 2020, 279, 128518.
20 An K Y, Ou X Q, An X L, et al. Journal of Central South University, 2021, 28(7), 1932.
21 Zhou X L, Li X Y, Chen C Q. Acta Materialia, 2015, 99, 77.
22 Hoover W. Physical Review A, 1985, 31(3), 1695.
23 Nos'E S. The Journal of Chemical Physics, 1984, 81(1), 511.
24 Honeycutt J D, Andersen H C. The Journal of Physical Chemistry, 1987, 91(19), 4950.
25 Edalati K, Horita Z. Materials Science and Engineering: A, 2016, 652, 325.
26 Liu M P, Xie X F, Zhang Z Y, et al. Materials Science Forum, 2015, 817, 627.
27 Edalati K, Uehiro R, Fujiwara K, et al. Materials Science and Enginee-ring: A, 2017, 701, 158.
28 Zhao H L, Song M, Ni S, et al. Acta Materialia, 2017, 131, 271.
29 Wu X, Tao N, Hong Y, et al. Journal of Physics D: Applied Physics, 2005, 38(22), 4140.
[1] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[2] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[3] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[4] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[5] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[6] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[7] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[8] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[9] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[10] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[11] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[12] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[13] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[14] 张东方, 梁威, 杨才千, 陈俊, 李敏, 许福, 徐利敏. 相变云砼石水泥基复合材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22060207-7.
[15] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed