Phase Transformation Mechanism of Al-Zn System During High Pressure Torsion
CHEN Chen1,2, CHEN Yulin3, SU Xuan1,2, LU Jingyu1,2, YU Junjie1,2, ZHANG Jian1, JI Weixi1,2,*
1 Department of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China 2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China 3 School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
Abstract: In this work, the mechanical alloying of the immiscible Al-Zn system at room temperature under high pressure torsion was studied. Mechanical alloying via high pressure torsion (HPT) was studied for the immiscible Al-Zn system at room temperature. Stacks of alternating 0.3 mm thick sheets of pure Al and Zn were subjected to HPT processing at a pressure of 3 GPa for 50 revolutions. The results show that two phase transformation occurred in the Al-Zn alloy after HPT process, the phase transformation from crystal to amorphous, and the phase transition from hexagonal close-packed to face-centered cubic. High local dislocation density may primarily accounted for the crystalline-to-amorphous transformation in Al-Zn alloy and the phase transformation is attributed to the sliding of Shockley partial dislocations generated at the Al-Zn grain boundaries. Moreover, this work provides a new approach for the in-depth study of the solid phase transformation of Al-Zn alloys. It may also shed lights on improving the mechanical properties of the HPT processed Al-Zn alloys.
1 Han Z Y, Huang X G,Yang Z C. Materials, 2019, 12(9),1520. 2 Li Q L, Ma X D, Zhang X Y, et al. Materials Letters, 2022, 308, 131208. 3 Chuvil'deev V N, Nokhrin A V, Kopylov V I, et al. Journal of Alloys and Compounds, 2022, 891, 162110. 4 Chinh N Q, Csanadi T, Gubicza J, et al. MRS Communications, 2019, 9(1), 310. 5 Reda Y, Yehia H M, El-Shamy A M. Egyptian Journal of Petroleum, 2022, 31(1), 9. 6 Liu C, Li Y, Ge Q Q, et al. Materials Letters, 2021, 300, 130181. 7 Wu S H, Soreide H S, Chen B, et al. Nature Communications, 2022, 13(1), 3495. 8 Wang X X,Zhang X, Jing X Y, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(10), 2613. 9 Hernández-Escobar D, Marcus J, Han J K, et al. Materials Science and Engineering: A, 2020, 771. 10 Oh-ishi K, Edalati K, Kim H S, et al. Acta Materialia, 2013, 61(9), 3482. 11 Mousavi T, Dai J Y, Bazarnik P, et al. Journal of Alloys and Compounds, 2020, 832, 155007. 12 Yadav D, Bauri R, Chawake N. Materials Characterization, 2018, 136, 221. 13 Shimono M, Tsuchiya K, Onodera H. Materials Transactions, 2013, 54, (9), 1575. 14 Wei B Q, Ni S, Liu Y, et al. Journal of Materials Science & Technology, 2020, 49, 211. 15 Wei B Q, Ni S, Liu Y, et al. Scripta Materialia, 2019, 169, 46. 16 Edalati K, Horita Z, Valiev R Z. Scientific Reports, 2018, 8(1), 6740. 17 Song Z Z, Niu R M, Cui X Y, et al. Scripta Materialia, 2022, 210, 114423. 18 Liu Y F, Yin F X, Yu H, et al. Materials Science and Engineering A, 2022, 840,142911. 19 Sun Y F, Rong Z Y, Guan S K. Materials Letters, 2020, 279, 128518. 20 An K Y, Ou X Q, An X L, et al. Journal of Central South University, 2021, 28(7), 1932. 21 Zhou X L, Li X Y, Chen C Q. Acta Materialia, 2015, 99, 77. 22 Hoover W. Physical Review A, 1985, 31(3), 1695. 23 Nos'E S. The Journal of Chemical Physics, 1984, 81(1), 511. 24 Honeycutt J D, Andersen H C. The Journal of Physical Chemistry, 1987, 91(19), 4950. 25 Edalati K, Horita Z. Materials Science and Engineering: A, 2016, 652, 325. 26 Liu M P, Xie X F, Zhang Z Y, et al. Materials Science Forum, 2015, 817, 627. 27 Edalati K, Uehiro R, Fujiwara K, et al. Materials Science and Enginee-ring: A, 2017, 701, 158. 28 Zhao H L, Song M, Ni S, et al. Acta Materialia, 2017, 131, 271. 29 Wu X, Tao N, Hong Y, et al. Journal of Physics D: Applied Physics, 2005, 38(22), 4140.