1 School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, Shandong, China 2 State Key Laboratory of Electronic Thin Films and Integrated Devices,School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract: Vanadium dioxide (VO2) has potential applications in many fields due to its excellent metal-insulator phase transition. The hysteresis width plays an important role in practical applications owing to the fact that different devices require different hysteresis width. For sensor-type devices, a smaller hysteresis width is required in order to run these devices reliably and efficiently. However, for storage-type devices, a relatively larger hysteresis width is required. In order to meet the needs of the different devices, VO2 has been prepared by magnetron sputtering, sol-gel, polymer-assisted deposition and pulsed laser deposition, and great efforts have been made to investigate the hysteresis width. This article systematically reviews the recent research progress in regulating the hysteresis width of VO2. Firstly, the influence of the surface morphology (grain size, grain shape and grain boundaries), element doping and preferential orientation on the hysteresis width is summarized. Then, the modulation mechanism of the hysteresis width is discussed. Finally, suggestions as well as perspectives for the future are provided.
1 Sun D D, Chen Z, Wen Q Y, et al. Acta Physica Sinica, 2013, 62(1), 393 (in Chinese). 孙丹丹, 陈智, 文岐业, 等. 物理学报, 2013, 62(1), 393. 2 Jepsen P, Fischer B, Thoman A, et al. Physical Review B, 2006, 74(20), 205103. 3 Du J, Gao Y F, Luo H J, et al. Solar Energy Materials and Solar Cells, 2011, 95(2), 469. 4 Zhao S W, Tao Y, Chen Y X, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 10254. 5 Zhang H F, Wu Z M, Niu R H, et al. Applied Surface Science, 2015, 331, 92. 6 Ji C H, Wu Z M, Lu L L, et al. Journal of Materials Chemistry C, 2018, 6(24), 6502. 7 Sun X N, Qu Z G, Wang Q G, et al. Acta Physica Sinica, 2019, 68(10), 107201 (in Chinese). 孙肖宁, 曲兆明, 王庆国, 等. 物理学报, 2019, 68(10), 107201. 8 Wang C L, Tian Z, Xing Q R, et al. Acta Physica Sinica, 2010, 59(11), 7857 (in Chinese). 王昌雷, 田震, 邢岐荣, 等. 物理学报, 2010, 59(11), 7857. 9 Chen Z, Wen Q Y, Dong K, eta al. Chinese Physics Letters, 2013, 30(1), 017102. 10 Zhang H F, Sha H, Wu Z M, et al. Materials Reports A:Review Papers, 2019, 33(8), 2513 (in Chinese). 张化福, 沙浩, 吴志明, 等. 材料导报:综述篇, 2019, 33(8), 2513. 11 Driscoll T, Kim H T, Chae B G, et al. Science, 2009, 325(5947), 1518. 12 Liang Y G, Lee S, Yu H S, et al. Nature Communications, 2020, 11(1/8), 3539. 13 Suh J Y, Lopez R, Feldman L C, et al. Journal of Applied Physics, 2004, 96(2), 1209. 14 Narayan J, Bhosle V M. Journal of Applied Physics, 2006, 100(10), 103524. 15 Kang L T, Gao Y F, Zhang Z T, et al. Journal of Materials Chemistry C, 2010, 114(4), 1901. 16 Schläefer J, Sol C, Li T, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109944 17 Lopez R, Boatner L A, Haynes T E, et al. Applied Physics Letters, 2001, 79(19), 3161. 18 Liu K, Lee S, Yang S, et al. Materials Today, 2018, 21(8), 875. 19 Xu F, Cao X, Luo H J, et al. Journal of Materials Chemistry C, 2018, 6(8), 1903. 20 Lopez R, Haynes T E, Boatner L A, et al. Physical Review B, 2002, 65(22), 224113. 21 Zhang H F, Wu Z M, He Q, et al. Applied Surface Science, 2013, 277, 218. 22 Lysenko S, Vikhnin V, Rúa A, et al. Physical Review B, 2010, 82(20), 205425 23 Aliev R A, Andreev V N, Kapralova V M, et al. Physics of the Solid State, 2006, 48(5), 929. 24 Xu Y J, Huang W X, Shi Q W, et al. Journal of Sol-Gel Science and Technology, 2012, 64, 493. 25 Zhang H F, Wu Z M, Yan D W, et al. Thin Solid Films, 2014, 552, 218. 26 Minch R, Moonoosawmy K R, Solterbeck C, et al. Thin Solid Films, 2014, 556, 277. 27 Zhang H F, Wu Z M, Wu X F, et al. Vacuum, 2014, 104, 47. 28 Xu Y J, Huang W X, Shi Q W, et al. Materials Research Bulletin, 2013, 48(10), 4146. 29 Donev E U, Lopez R, Feldman L C, et al. Nano Letters, 2009, 9(2), 702. 30 Zhang H F, Wu Z M, Yang W Y, et al. Vacuum, 2013, 94, 84. 31 Zhang H F, Wu Z M, Wang C, et al. Vacuum, 2019, 170, 108971 32 Yang Y, Lee K, Zobel M, et al. Advanced Materials, 2012, 24, 1571. 33 Be'teille F, Mazerolles L, Livage J. Materials Research Bulletin, 1999, 34(14/15), 2177. 34 Xu Y J, Huang W X, Shi Q W, et al. Applied Surface Science, 2012, 259, 256. 35 Qazilbash, M M, Brehm M, Chae B G, et al. Science, 2007, 318 (5857), 1750. 36 Yang T H, Jin C M, Zhou H H, et al. Applied Physics Letters, 2010, 97(7), 072101. 37 Yang T, Aggarwal R, Gupta A, et al. Journal of Applied Physics, 2010, 107(5), 053514. 38 Burkhardt W, Christmann T, Meyer B K, et al. Thin Solid Films, 1999, 345(2), 229. 39 Kang L T, Gao Y F, Luo H J, et al. ACS Applied Materials & Interfaces, 2009, 1(10), 2211. 40 Batista C, Ribeiro R M, Teixeira V. Nanoscale Research Letters, 2011, 6(1), 1. 41 Zhu J T, Zhou Y J, Wang B B, et al. ACS Applied Materials & Interfaces, 2015, 7(50), 27796. 42 Dou S L, Zhang W Y, Wang Y M, et al. Materials Chemistry and Physics, 2018, 215, 91. 43 Kong M Q, Egbo K, Liu C P, et al. Journal of Alloys and Compounds, 2020, 833, 155053. 44 Victor J L, Marcel C, Sauques L, et al. Journal of Alloys and Compounds, 2021, 858, 157658. 45 Chen X, Srivastava V, Dabade V, et al. Journal of the Mechanics and Physics of Solids, 2013, 61, 2566. 46 Mai L Q, Hu B, Hu T, et al. Journal of Physical Chemistry B, 2006, 110(39), 19084. 47 Khan G R, Asokan K, Ahmad B. Thin Solid Films, 2017, 625, 155. 48 Nishikawa M, Nakajima T, Kumagai T, et al. Journal of the Ceramic Society of Japan, 2011, 119(7), 577. 49 Mlyuka N R, Niklasson G A, Granqvist C G. Applied Physics Letters, 2009, 95(17), 171909. 50 Mabakachaba B M, Madiba I G, Kennedy J, et al. Surfaces and Interfaces, 2020, 20, 100590. 51 Be'teille F, livage J. Journal of Sol-Gel Science and Technology, 1998, 13, 915. 52 Ji C H, Wu Z M, Wu X F, et al. Applied Surface Science, 2018, 455, 622. 53 Wu X F, Wu Z M, Ji C H, et al. ACS Applied Materials & Interfaces, 2016, 8, 11842. 54 Zhang H F, Wu ZM, Wu XF, et al. Thin Solid Films, 2014, 568, 63. 55 Song L W, Zhang Y B, Huang W X, et al. Materials Research Bulletin, 2013, 48(6), 2268. 56 Ji C H, Wu Z M, Wu X F, et al. Solar Energy Materials and Solar Cells, 2018, 176, 174. 57 Piccirillo C, Binions R, Parkin I P. European Journal of Inorganic Chemistry, 2007(25), 4050. 58 Wu X F, Wu Z M, Zhang H F, et al. Surface & Coatings Technology, 2015, 276, 248. 59 Denatale J F, Hood P J, Harker A B. Journal of Applied Physics, 1989, 66(12), 5844. 60 Christophe P, Jean-Marc F, Michel G. Journal of Physics Condensed Matter, 1999, 11(16), 3259. 61 Sahana M B, Dharmaprakash M S, Shivashankar S A. Journal of Materials Chemistry, 2002, 12, 333. 62 Jin P, Tazawa M, Ikeyama M, et al. Journal of Vacuum Science and Technol A, 1999, 17(4), 1817. 63 Binions R, Hyett G, Piccirillo C, et al. Journal of Materials Chemistry, 2007, 17(44), 4652 64 Appavoo K, Lei D Y, Sonnefraud Y, et al. Nano Letters, 2012, 12(2), 780. 65 Song L W, Huang W X, Zhang Y B, et al. Journal of Materials Science-materials in Electronics, 2013, 24, 3496. 66 Lu W W, Zhao G L, Song B, et al. Surface & Coatings Technology, 2017, 320, 311. 67 Heckman E, Gonzalez L, Guha S, et al. Thin Solid Films, 2009, 518(1), 265. 68 Jin P, Nakao S, Tanemura S. Nuclear Instruments and Methods in Physics Research B, 1998, 141, 419. 69 Karl H, Peyinghaus S C. Nuclear Instruments and Methods in Physics Research B, 2015, 365, 75. 70 Daesu L, Jaeseong L, Kyung S, et al. Nano Letters, 2017, 17, 5614. 71 Long S W, Cao X, Sun G Y, et al. Applied Surface Science, 2018, 441, 764. 72 Thompson Z J, Stickel A, Jeong Y G, et al. Nano Letters, 2015, 15(9), 5893.