Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21050100-10    https://doi.org/10.11896/cldb.21050100
  金属与金属基复合材料 |
二氧化钒金属-绝缘相变的回线宽度及其调控研究进展
张化福1,*, 周爱萍1, 吴志明2, 蒋亚东2
1 山东理工大学物理与光电工程学院,山东 淄博 255049
2 电子科技大学光电科学与工程学院,电子薄膜与集成器件国家重点实验,成都 610054
Research Progress on the Hysteresis Width and Its Modulation of Metal-Insulator Phase Transition of Vanadium Dioxide
ZHANG Huafu1,*, ZHOU Aiping1, WU Zhiming2, JIANG Yadong2
1 School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
2 State Key Laboratory of Electronic Thin Films and Integrated Devices,School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
下载:  全 文 ( PDF ) ( 15423KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优异的金属-绝缘相变性能使得二氧化钒(VO2)具有广阔的应用前景。回线宽度是影响VO2实际应用的一个重要指标,不同类型的器件对回线宽度的要求不同。传感类器件要求VO2的回线宽度要尽量小,而存储类器件则要求VO2具有较大的回线宽度。为了满足不同器件的应用要求,研究人员已通过磁控溅射法、溶胶-凝胶法、聚合物辅助沉积法和脉冲激光沉积法等方法制备了VO2,并对其回线宽度进行了研究。本文先从形貌(颗粒大小、颗粒形状和晶界)、元素掺杂和择优取向三个方面对回线宽度的研究进行了总结;然后,对二氧化钒回线宽度的调控机理进行了讨论;最后,指出当前研究中的不足,并对将来的工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张化福
周爱萍
吴志明
蒋亚东
关键词:  回线宽度  二氧化钒  金属-绝缘相变  薄膜  智能窗  光电开关  光存储器  表面形貌    
Abstract: Vanadium dioxide (VO2) has potential applications in many fields due to its excellent metal-insulator phase transition. The hysteresis width plays an important role in practical applications owing to the fact that different devices require different hysteresis width. For sensor-type devices, a smaller hysteresis width is required in order to run these devices reliably and efficiently. However, for storage-type devices, a relatively larger hysteresis width is required. In order to meet the needs of the different devices, VO2 has been prepared by magnetron sputtering, sol-gel, polymer-assisted deposition and pulsed laser deposition, and great efforts have been made to investigate the hysteresis width. This article systematically reviews the recent research progress in regulating the hysteresis width of VO2. Firstly, the influence of the surface morphology (grain size, grain shape and grain boundaries), element doping and preferential orientation on the hysteresis width is summarized. Then, the modulation mechanism of the hysteresis width is discussed. Finally, suggestions as well as perspectives for the future are provided.
Key words:  hysteresis width    vanadium dioxide    metal-insulator phase transition    thin film    smart window    optoelectronic switching    optical storage device    surface morphology
发布日期:  2023-03-27
ZTFLH:  TN213  
基金资助: 国家自然科学基金重点项目(61235006)
通讯作者:  *张化福,山东理工大学物理与光电工程学院副教授、硕士研究生导师。2002年7月本科毕业于鲁东大学物理系,2005年于电子科技大学光学专业硕士毕业后到山东理工大学工作至今,2014年12月取得电子科技大学光学工程博士学位。目前,主要从事光电材料与器件的研究,发表论文20余篇。huafuzhang@126.com   
引用本文:    
张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
ZHANG Huafu, ZHOU Aiping, WU Zhiming, JIANG Yadong. Research Progress on the Hysteresis Width and Its Modulation of Metal-Insulator Phase Transition of Vanadium Dioxide. Materials Reports, 2023, 37(6): 21050100-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050100  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21050100
1 Sun D D, Chen Z, Wen Q Y, et al. Acta Physica Sinica, 2013, 62(1), 393 (in Chinese).
孙丹丹, 陈智, 文岐业, 等. 物理学报, 2013, 62(1), 393.
2 Jepsen P, Fischer B, Thoman A, et al. Physical Review B, 2006, 74(20), 205103.
3 Du J, Gao Y F, Luo H J, et al. Solar Energy Materials and Solar Cells, 2011, 95(2), 469.
4 Zhao S W, Tao Y, Chen Y X, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 10254.
5 Zhang H F, Wu Z M, Niu R H, et al. Applied Surface Science, 2015, 331, 92.
6 Ji C H, Wu Z M, Lu L L, et al. Journal of Materials Chemistry C, 2018, 6(24), 6502.
7 Sun X N, Qu Z G, Wang Q G, et al. Acta Physica Sinica, 2019, 68(10), 107201 (in Chinese).
孙肖宁, 曲兆明, 王庆国, 等. 物理学报, 2019, 68(10), 107201.
8 Wang C L, Tian Z, Xing Q R, et al. Acta Physica Sinica, 2010, 59(11), 7857 (in Chinese).
王昌雷, 田震, 邢岐荣, 等. 物理学报, 2010, 59(11), 7857.
9 Chen Z, Wen Q Y, Dong K, eta al. Chinese Physics Letters, 2013, 30(1), 017102.
10 Zhang H F, Sha H, Wu Z M, et al. Materials Reports A:Review Papers, 2019, 33(8), 2513 (in Chinese).
张化福, 沙浩, 吴志明, 等. 材料导报:综述篇, 2019, 33(8), 2513.
11 Driscoll T, Kim H T, Chae B G, et al. Science, 2009, 325(5947), 1518.
12 Liang Y G, Lee S, Yu H S, et al. Nature Communications, 2020, 11(1/8), 3539.
13 Suh J Y, Lopez R, Feldman L C, et al. Journal of Applied Physics, 2004, 96(2), 1209.
14 Narayan J, Bhosle V M. Journal of Applied Physics, 2006, 100(10), 103524.
15 Kang L T, Gao Y F, Zhang Z T, et al. Journal of Materials Chemistry C, 2010, 114(4), 1901.
16 Schläefer J, Sol C, Li T, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109944
17 Lopez R, Boatner L A, Haynes T E, et al. Applied Physics Letters, 2001, 79(19), 3161.
18 Liu K, Lee S, Yang S, et al. Materials Today, 2018, 21(8), 875.
19 Xu F, Cao X, Luo H J, et al. Journal of Materials Chemistry C, 2018, 6(8), 1903.
20 Lopez R, Haynes T E, Boatner L A, et al. Physical Review B, 2002, 65(22), 224113.
21 Zhang H F, Wu Z M, He Q, et al. Applied Surface Science, 2013, 277, 218.
22 Lysenko S, Vikhnin V, Rúa A, et al. Physical Review B, 2010, 82(20), 205425
23 Aliev R A, Andreev V N, Kapralova V M, et al. Physics of the Solid State, 2006, 48(5), 929.
24 Xu Y J, Huang W X, Shi Q W, et al. Journal of Sol-Gel Science and Technology, 2012, 64, 493.
25 Zhang H F, Wu Z M, Yan D W, et al. Thin Solid Films, 2014, 552, 218.
26 Minch R, Moonoosawmy K R, Solterbeck C, et al. Thin Solid Films, 2014, 556, 277.
27 Zhang H F, Wu Z M, Wu X F, et al. Vacuum, 2014, 104, 47.
28 Xu Y J, Huang W X, Shi Q W, et al. Materials Research Bulletin, 2013, 48(10), 4146.
29 Donev E U, Lopez R, Feldman L C, et al. Nano Letters, 2009, 9(2), 702.
30 Zhang H F, Wu Z M, Yang W Y, et al. Vacuum, 2013, 94, 84.
31 Zhang H F, Wu Z M, Wang C, et al. Vacuum, 2019, 170, 108971
32 Yang Y, Lee K, Zobel M, et al. Advanced Materials, 2012, 24, 1571.
33 Be'teille F, Mazerolles L, Livage J. Materials Research Bulletin, 1999, 34(14/15), 2177.
34 Xu Y J, Huang W X, Shi Q W, et al. Applied Surface Science, 2012, 259, 256.
35 Qazilbash, M M, Brehm M, Chae B G, et al. Science, 2007, 318 (5857), 1750.
36 Yang T H, Jin C M, Zhou H H, et al. Applied Physics Letters, 2010, 97(7), 072101.
37 Yang T, Aggarwal R, Gupta A, et al. Journal of Applied Physics, 2010, 107(5), 053514.
38 Burkhardt W, Christmann T, Meyer B K, et al. Thin Solid Films, 1999, 345(2), 229.
39 Kang L T, Gao Y F, Luo H J, et al. ACS Applied Materials & Interfaces, 2009, 1(10), 2211.
40 Batista C, Ribeiro R M, Teixeira V. Nanoscale Research Letters, 2011, 6(1), 1.
41 Zhu J T, Zhou Y J, Wang B B, et al. ACS Applied Materials & Interfaces, 2015, 7(50), 27796.
42 Dou S L, Zhang W Y, Wang Y M, et al. Materials Chemistry and Physics, 2018, 215, 91.
43 Kong M Q, Egbo K, Liu C P, et al. Journal of Alloys and Compounds, 2020, 833, 155053.
44 Victor J L, Marcel C, Sauques L, et al. Journal of Alloys and Compounds, 2021, 858, 157658.
45 Chen X, Srivastava V, Dabade V, et al. Journal of the Mechanics and Physics of Solids, 2013, 61, 2566.
46 Mai L Q, Hu B, Hu T, et al. Journal of Physical Chemistry B, 2006, 110(39), 19084.
47 Khan G R, Asokan K, Ahmad B. Thin Solid Films, 2017, 625, 155.
48 Nishikawa M, Nakajima T, Kumagai T, et al. Journal of the Ceramic Society of Japan, 2011, 119(7), 577.
49 Mlyuka N R, Niklasson G A, Granqvist C G. Applied Physics Letters, 2009, 95(17), 171909.
50 Mabakachaba B M, Madiba I G, Kennedy J, et al. Surfaces and Interfaces, 2020, 20, 100590.
51 Be'teille F, livage J. Journal of Sol-Gel Science and Technology, 1998, 13, 915.
52 Ji C H, Wu Z M, Wu X F, et al. Applied Surface Science, 2018, 455, 622.
53 Wu X F, Wu Z M, Ji C H, et al. ACS Applied Materials & Interfaces, 2016, 8, 11842.
54 Zhang H F, Wu ZM, Wu XF, et al. Thin Solid Films, 2014, 568, 63.
55 Song L W, Zhang Y B, Huang W X, et al. Materials Research Bulletin, 2013, 48(6), 2268.
56 Ji C H, Wu Z M, Wu X F, et al. Solar Energy Materials and Solar Cells, 2018, 176, 174.
57 Piccirillo C, Binions R, Parkin I P. European Journal of Inorganic Chemistry, 2007(25), 4050.
58 Wu X F, Wu Z M, Zhang H F, et al. Surface & Coatings Technology, 2015, 276, 248.
59 Denatale J F, Hood P J, Harker A B. Journal of Applied Physics, 1989, 66(12), 5844.
60 Christophe P, Jean-Marc F, Michel G. Journal of Physics Condensed Matter, 1999, 11(16), 3259.
61 Sahana M B, Dharmaprakash M S, Shivashankar S A. Journal of Materials Chemistry, 2002, 12, 333.
62 Jin P, Tazawa M, Ikeyama M, et al. Journal of Vacuum Science and Technol A, 1999, 17(4), 1817.
63 Binions R, Hyett G, Piccirillo C, et al. Journal of Materials Chemistry, 2007, 17(44), 4652
64 Appavoo K, Lei D Y, Sonnefraud Y, et al. Nano Letters, 2012, 12(2), 780.
65 Song L W, Huang W X, Zhang Y B, et al. Journal of Materials Science-materials in Electronics, 2013, 24, 3496.
66 Lu W W, Zhao G L, Song B, et al. Surface & Coatings Technology, 2017, 320, 311.
67 Heckman E, Gonzalez L, Guha S, et al. Thin Solid Films, 2009, 518(1), 265.
68 Jin P, Nakao S, Tanemura S. Nuclear Instruments and Methods in Physics Research B, 1998, 141, 419.
69 Karl H, Peyinghaus S C. Nuclear Instruments and Methods in Physics Research B, 2015, 365, 75.
70 Daesu L, Jaeseong L, Kyung S, et al. Nano Letters, 2017, 17, 5614.
71 Long S W, Cao X, Sun G Y, et al. Applied Surface Science, 2018, 441, 764.
72 Thompson Z J, Stickel A, Jeong Y G, et al. Nano Letters, 2015, 15(9), 5893.
[1] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[2] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[3] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[4] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[5] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[6] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[7] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[8] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[9] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[10] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[11] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[12] 张夏宇, 魏珊珊, 黄成, 王海兰, 董孟阳, 肖雨欣, 黄荣娟, 于涛. 新型三芳基乙烯光致变色材料的设计合成及其在光擦写薄膜中的应用[J]. 材料导报, 2022, 36(6): 20120263-5.
[13] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[14] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[15] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed