Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 20120005-18    https://doi.org/10.11896/cldb.20120005
  金属与金属基复合材料 |
可穿戴热电发电器的研究进展
张斌, 徐桂英*
北京科技大学材料科学与工程学院, 北京市新能源材料与技术重点实验室, 北京 100083
Research Progress of Wearable Thermoelectric Generator
ZHANG Bin, XU Guiying*
Beijing Municipal Key Lab of Advanced Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 8869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人体的能量大部分以热量的形式释放,其与外界的温差平均约5~30 ℃,因此体热可以很好地作为热电发电器的热源。与传统发电器相比,可穿戴热电发电器将人体所散发的低品位热量转化为有效电能,有可能为一些功率要求小于毫瓦级的无线传感器节点提供足够的能量,同时还具备无污染、轻便、稳定等特性,因此越来越受到关注。目前柔性可穿戴热电发电器的研究主要聚焦基于块体型热电材料、基于薄膜状型热电材料和基于纺织织物型热电材料的三大类热电发电器。其中,块体型热电发电器的输出功率一般为每平方厘米几十微瓦,热电臂材料主要为室温热电性能较高的碲化铋基合金,研究重点在于提升这类器件的输出性能和柔性。薄膜型热电发电器的输出功率一般在每平方厘米纳瓦和微瓦之间,按结构可分为水平型和垂直型,常见的水平型器件包含串联型、堆积与卷起型和折叠型,通常会产生较大的输出电压;而垂直型器件单位面积的热电臂对数增多,会产生较大的功率密度。纺织织物型热电发电器输出功率较小,但是具有优良的拉伸、弯曲和面内剪切性能,可以适应3D变形,更适合在弯曲的人体皮肤表面收集热量。本文综述了以上三大类主流的柔性可穿戴热电发电器的研究状况,并从设计、结构和性能方面分析了各类热电发电器的优缺点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斌
徐桂英
关键词:  柔性可穿戴  热电发电器  块体型  薄膜型  纺织织物型    
Abstract: Most of the energy of the human body is released in the form of heat. The average temperature difference between human body and outside circumstances is about 5—30 ℃, therefore human body heat can be a good energy source for thermoelectric generators. Compared with traditional generators, wearable thermoelectric generators can harvest and convert low-grade heat released by the human body into usable electrical energy, which may be sufficient for some wireless sensor nodes whose power demand is less than milliwatts. Wearable thermoelectric generators offer a new choice for the power supply of wearable devices, and seem superior to secondary rechargeable batteries owing to the merits of non-pollution, light weight, and continuity. Currently the global upsurge of research interest in this field mainly focuses on three types of generators which are fabricated based on different types of thermoelectric materials-bulk materials, thin films, and fabrics. The first type is generators based on bulk thermoelectric materials with high room-temperature thermoelectric properties (mainly bismuth telluride-based alloys and bismuth telluride-based alloys). This type of generators can output the power of generally tens of microwatts per square centimeter, and their output performance and flexibility are relatively poor and need to be improved through further investigations. The second type of generators (based on thermoelectric thin films) can output the power density ranging from nanowatts to microwatts per square centimeter, and can be divided further into horizontal type and vertical type according to the device structure. The horizontal type can produce relatively larger output voltage and is usually realized by different ways of arrangement of thermoelectric arms, such as stacking, rolling, or folding. In comparison, the vertical type devices have higher area-average numbers of thermoelectric arm pairs, and hence, larger power density. The third type of generators fabricated based on thermoelectric fabrics, notwithstanding low output power density, is adaptable to 3D deformation because of their high stretch, bending and in-plane shear properties, making them more suitable for collecting heat on the curved surface of human skin. The present review summarizes the research status of the above mentioned three types of potential wearable thermoelectric generators. It also analyzes the merits and demerits of each type of generators from the perspectives of design, structure and performance.
Key words:  flexible wearable    thermoelectric generator    block    thin-film    textile fabric
发布日期:  2023-02-08
ZTFLH:  TN37  
基金资助: 国家重点研发计划“国家质量基础的共性技术研究与应用”重点专项项目“新型功能材料关键特性参数计量标准研究”(2017YFF0204706);中央高校基本科研业务费专项资金(FRF-MP-18-005);颠覆性创新(19-163-13-ZT-001-009-19)
通讯作者:  *徐桂英,北京科技大学材料科学与工程学院教授、博士研究生导师。1983年本科、1995年博士毕业于东北大学,1995—1998年在清华大学做博士后研究。自1998年以来专业从事热电半导体材料与器件的研究,曾任中国材料研究学会热电材料及应用分会理事,带领北京科技大学热电研究团队提出了利用热电性能分析载流子散射机制的电导率比值法,提出了利用热电晶体管结构提高热电转换效率的原理和方法,提出了热电忆阻器的概念和原理,对高速低能耗光热电忆阻器进行了模拟论证。发表论文100多篇。   
作者简介:  张斌,北京科技大学硕士研究生,师从徐桂英教授。2019年9月起在徐老师指导下主要从事可穿戴热电发电器器件研究。
引用本文:    
张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
ZHANG Bin, XU Guiying. Research Progress of Wearable Thermoelectric Generator. Materials Reports, 2023, 37(2): 20120005-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120005  或          http://www.mater-rep.com/CN/Y2023/V37/I2/20120005
1 Leonov V, Torfs T, Fiorini P, et al. IEEE Sensors Journal, 2007, 7(5), 650.
2 Leonov V. IEEE Sensors Journal, 2013, 13(6), 2284.
3 Bahk J H, Fang H, Yazawa K, et al. Journal of Materials Chemistry C, 2015, 3(40), 10362.
4 Leonov V, Vullers R. Journal of Renewable & Sustainable Energy, 2009, 1(6), 47.
5 Ando J O H, Maran A L O, Henao N C . Renewable & Sustainable Energy Reviews, 2018, 91, 376.
6 Vullers R J M, Van S R, Doms I, et al. Solid-State Electronics, 2009, 53(7), 684.
7 Winter D A . Biomechanics and motor control of human movement. Master's Thesis, University of Waterloo Press, Canada, 1987.
8 Riemer R, Shapiro A. NeuroengRehabil, 2011, 8, 1.
9 Chen L D, Liu R H, Shi X. Thermoelectric materials and devices. Science Press, China, 2018(in Chinese).
陈立东, 刘睿恒, 史迅. 热电材料与器件, 科学出版社, 2018.
10 Zhang J Z. Thermoelectric technology, Tianjin Science and Technology Press, China, 2013(in Chinese).
张建中. 温差电技术, 天津科学技术出版社, 2013.
11 Rowe D. CRC Handbook of Thermoelectrics, Space Applications, DIO:10. 1201/9781420049718.
12 Hao F, Qiu P, Tang Y, et al. Energy & Environmental Science, 2016, 9(10), 3120.
13 Gou J Q, Geng H Y, Ochi T, et al. Electronic Materials, 2012, 41(6), 1036.
14 Geng H, Ochi T, Suzuki S, et al. Electronic Materials, 2013, 42(7), 1999.
15 Bartholome K, Balke B, Zuckermann D, et al. Electronic Materials, 2014, 43(6), 1775.
16 Champier D. Energy Conversion and Management, 2017, 140, 167.
17 Settaluri K T, Lo H, Ram R J. Journal of Electronic Materials, 2012, 41(6), 984.
18 Suarez F, Nozariasbmarz A, Vashaee D, et al. Energy & Environmental Science, 2016, 9(6), 2099.
19 Buist R J, Roman S J. In:Eighteenth International Conference on Thermoelectrics. IEEE, Baltimore, Maryland, USA, 1999, pp.249.
20 Liao C N, Lee C H, Chen W J. Electrochemical and Solid-State Letters, 2007, 10(9), 23.
21 Feng S P, Chang Y H, Yang J, et al. Physical Chemistry Chemical Physics, 2013, 15(18), 6757.
22 Zhang Q H, Bai S Q, Chen L D. Journal of Inorganic Materials, 2019, 34(3), 279.
张骐昊, 柏胜强, 陈立东. 无机材料学报, 2019, 34(3), 279.
23 Yang P, Liu K, Chen Q, et al. Angewandte Chemie International Edition, 2016, 55(39), 12050.
24 Wen N, Fan Z, Yang S, et al. Nano Energy, 2020, 78, 105361.
25 Lan X, Wang T, Liu C, et al. Composites Science and Technology, 2019, 182, 107767. 1.
26 Ge R, Dong X, Sun L, et al. Journal of Materials Chemistry C, DOI:10. 1039/c9tc06079k .
27 Yuan J, Zhu R. Applied Energy, 2020, 271, 115250.
28 Wang Y, Shi Y, Mei D, et al. Applied Energy, 2018, 215, 690.
29 Liu Y, Shi Y, Li J, et al. Energy Conversion and Management, 2020, 220, 113080.
30 Lalonde A D, Pei Y, Snyder G J, et al. Energy & Environmental Science, 2011, 4(6), 2090.
31 Vondrak J, Schmidt M, Proto A, et al. In:2019 4th International Confe-rence on Smart and Sustainable Technologies(SpliTech), Split, Croatia, 2019, pp.1.
32 Wang Y, Shi Y, Mei D, et al. Applied Energy, 2017, 205, 710.
33 Eom Y, Wijethunge D, Park H, et al. Applied Energy, 2017, 206(nov. 15), 649.
34 Han L, Tang X, Zhang Q, et al. Applied Physics Letters, 2008, 93(25), 3401.
35 Yuan J, Zhu R. In: Self-Powered Wearable Multi-Sensing Bracelet with Flexible Thermoelectric Power Generator, 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII(TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, pp. 1431.
36 Madan D, Wang Z, Wright P K, et al. Applied Energy, 2015, 156, 587.
37 Suarez F, Parekh D P, Ladd C, et al. Applied Energy, 2017, 202, 736.
38 Hu L, Zhu T, Liu X, et al. Advanced Functional Materials, 2014, 24(33), 5211.
39 Watson T C, Vincent J N, Lee H . Applied Energy, 2019, 239, 898.
40 Francioso L, De Pascali C, Sglavo V, et al. Energy Conversion and Management, 2017, 145, 204.
41 Teweldebrhan D, Goyal V, Rahman M, et al. Applied Physics Letters, 2010, 96(5), 666.
42 Shahil K, Hossain M Z, Goyal V, et al. Journal of Applied Physics, 2012, 111(5), 1757.
43 Ding Z F, Bux S K, King D J, et al. Journal of materials chemistry, 2009, 19, 2588.
44 Piresa A L, Cruza I F, Ferreira-Teixeiraa S, et al. Materials Today:Proceedings, 2017, 4, 12383.
45 Zheng Z, Fan P, Luo J, et al. Thin Solid Films, 2014, 562, 181.
46 Peranio N, Winkler M, Bessas D, et al. Journal of Alloys and Compounds, 2012, 521, 163.
47 Takahashi M, Kojima M, Sato S, et al. Journal of Applied Physics, 2004, 96(10), 5582.
48 Oh M, Jeon S, Jeon H, et al. Journal of Electronic Materials, 2012, 41(1), 60.
49 Deng Y, Zhang Z, Wang Y, et al. Journal of Nanoparticle Research, 2012, 14(4), 1.
50 Krenzer B, Hanisch-Blicharski A, Schneider P, et al. Physical Review B, 2009, 80, 024307.
51 Liu W, Endicott L, Stoica V A, et al. Journal of Crystal Growth, 2015, 410(7), 23.
52 Harrison S E, Li S, Huo Y, et al. Applied Physics Letters, 2013, 102(17), 171906.
53 Wang K, Liu Y, Wang W, et al. Applied Physics Letters. 2013, 103(3), 31605.
54 Ding Y, Qiu Y, Cai K, et al. Nature Communications, 2019, 10, 841.
55 Lu Y, Qiu Y, Cai K, et al. Materials Today Physics, 2020, 14, 100223.
56 Jiang C, Ding Y, K Cai, et al. ACS Applied Materials & Interfaces, 2020, 12, 9646.
57 Jiang C, Wei P, Ding Y, et al. Nano Energy, 2021, 80, 105488.
58 Na J, Kim Y, Park T, et al. ACS Applied Materials & Interfaces, DOI:10. 1021/acsami. 6b10188.
59 Shen C. Preparation of bismuth telluride nano-materials by MBE and the thermo-electrical measurement of thin films. Master's Thesis, Shanghai University, China, 2013(in Chinese).
沈超. 碲化铋纳米材料的分子束外延法制备与薄膜热电性能测试. 硕士学位论文, 上海大学, 2013.
60 Shi Y G. Design and thermoelectric coupling modeling of wearable flexible thermoelectric generator. Master's Thesis, Zhejiang University, China, 2018(in Chinese).
史尧光. 穿戴式柔性热电发电器的设计与热电耦合建模研究. 硕士学位论文, 浙江大学, 2018.
61 Gao M, Li L, Song Y, et al. Journal of Materials Chemistry C, 2017, 5(12), 2971.
62 Madan D, Wang Z, Wright P K, et al. Applied Energy, 2015, 156(OCT. 15), 587.
63 Wen D L, Deng H T, Liu X, et al. Microsystems & Nanoengineering, 2020, 6, 68.
64 Shang H, Li T, Luo D, et al. ACS Applied Materials & Interfaces, 2020, 12, 7358.
65 Chang P S, Liao C N. Journal of Alloys and Compounds, 2020, 836, 155471.
66 Bo W, Yang G, Chengyi H, et al. Advanced Functional Materials, 2019, 29(25), 1900304. 1.
67 We J H, Kim S J, Cho B J . Energy, 2014, 73, 506.
68 Kim S, Choi K, Tazebay A, et al. ACS Nano, 2014, 8(3), 2377.
69 Chen A, Madan D, Wright P K, et al. Journal of Micromechanics & Microengineering, 2011, 21(10), 104006.
70 Fang H, Popere B C, Thomas E M, et al . Journal of Applied Ploymer Science. 2017, 133(7), 44208.
71 Singh D, Kutbee A T, Ghoneim M T, et al. Advanced Materials Techno-logies, 2017, 3(1), 1700192.
72 Rojas J P, Conchouso D, Arevalo A, et al. Nano Energy, 2017, 296, 301.
73 Su J, Vullers R J M, Goedbloed M, et al. Microelectronic Engineering, 2010, 87(5-8), 1242.
74 Shiozaki M, Sugiyama S, Watanabe N, et al. In: (2006) Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), IEEE Xplore, 2006,pp. 946.
75 Sun T, Peavey J L, Shelby M D, et al. Energy Conversion and Management, 2015, 103, 674.
76 Zhao Y, Kumar A, Hin C, et al. Nanoscale thermoelectrics, lecture notes in nanoscale science and technology, Springer International Publishing Switzerland, Cham, Switzerland, 2014, pp. 327.
77 Wang Z L, Wu W. Angewandte Chemie International Edition, 2012, 51, 11700.
78 Yang B, Zeng W, Peng Z H, et al. Advanced Energy Materials, 2016, 6(16), 1600505.
79 Takei K, Honda W, Harada S, et al. Advanced Healthcare Materials, 2015, 4(4), 487.
80 Wang Y, Wang L, Yang T, et al. Advanced Functional Materials, 2014, 24(29), 4666.
81 Lee J A, Aliev A E, Bykova J S, et al. Advanced Materials, 2016, 28(25), 5038.
82 Xu X, Zuo Y, Cai S, et al. Journal of Materials Chemistry C, 2018, 6(18), 4866.
83 Liang D, Yang H, Finefrock S W, et al. Nano Letters, 2012, 12(4), 2140.
84 Ryan J D, Mengistie D A, Gabrielsson R, et al. ACS Applied Materials & Interfaces, 2017, 9(10), 9045.
85 Ryan J D, Anja L, Hofmann A I, et al. ACS Applied Energy Materials, DOI:10. 1021/acsaem. 8b00617.
86 Du Y, Cai K F, Shen S Z, et al. RSC Advances, 2017, 7(69), 43737.
87 Jung M, Jeon S, Bae J. RSC Advances, 2018, 8(70), 39992.
88 Wu Q, Hu J. Composites Part B Engineering, 2016, 107, 59.
89 Qu S, Chen Y, Shi W, et al. Thin Solid Films, 2018, 667, 59.
90 Yadav A, Pipe K P, Shtein M. Journal of Power Sources, 2008, 175(2), 909.
91 Lee T, Park K T, Ku B C, et al. Nanoscale, 2019, 11(36), 16919.
92 Mitsuhiro Ito, Takuya Koizumi, Hirotaka Kojima, et al . Journal of Materials Chemistry A, 2017, 5(24), 12068.
93 Lu Z, Zhang H, Mao C, et al. Applied Energy, 2016, 164, 57.
94 Sun J K, Ju H W, Cho B J. Energy & Environmental Science, 2014, 7(6), 1959.
95 Kim M K, Kim M S, Lee S, et al. Smart Materials & Structures, 2014, 23(10), 105002.
96 Siddique A R M, Rabari R, Mahmud S, et al. Energy, 2016, 115, 1081.
97 Kim M K, Kim M S, Jo S E, et al. In: 2013 Transducers and Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS and EUROSENSORS 2013. Barcelona, Spain, 2013, pp.1376.
98 Qian W, Jinlian H. Smart Materials and Structures, 2017, 26(4), 045037.
99 Sun T, Zhou B, Zheng Q, et al. Nature Communications, 2020, 11, 572.
100 Lee J A, Aliev A E, Bykova J S, et al. Advanced Materials, 2016, 28(25), 5038.
101 Choi J, Jung Y, Yang S J, et al. ACS Nano, 2017, 11(8), 7608.
[1] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[2] 义志涛, 何国强. 柔性热电发电器的关键工艺及其展望[J]. 材料导报, 2018, 32(19): 3332-3337.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed