Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050222-6    https://doi.org/10.11896/cldb.21050222
  无机非金属及其复合材料 |
CVD法制备单层二硒化钨薄膜及其生长机制研究
胡冬冬1,2, 宋述鹏1,2,*, 刘俊男2, 毕江元2, 丁兴2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉科技大学材料与冶金学院,武汉 430081
CVD Synthesis and Growth Mechanism Study of Monolayer Tungsten Diselenide Films
HU Dongdong1,2, SONG Shupeng1,2,*, LIU Junnan2, BI Jiangyuan2, DING Xing2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081,China
2 College of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081,China
下载:  全 文 ( PDF ) ( 4334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硒化钨(WSe2)是一种具有较高带隙的半导体材料,其结构类似于石墨烯,具有优异的光电特性,在互补逻辑电路、场效应晶体管以及气敏传感器等领域具有潜在的应用价值。本实验采用化学气相沉积法(CVD)实现了大面积、高质量单层WSe2薄膜的制备,利用XPS、AFM、Raman对薄膜进行了表征,探究了基片到钨源的距离和生长温度对样品的形貌、尺寸及形核密度的影响。从晶体生长学的角度,用不同n(W):n(Se)(≫0.5,>0.5,=0.5)生长模型解释了不同形貌WSe2薄膜的生长机制,为可调控二维半导体单层薄膜制备工艺的优化提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡冬冬
宋述鹏
刘俊男
毕江元
丁兴
关键词:  二硒化钨薄膜  化学气相沉积  过渡金属硫属化合物  晶体生长    
Abstract: Tungsten diselenide(WSe2)is a semiconductor material with wide band gap, and its structure is similar to that of graphene. It has potential applications in many fields such as complementary logic circuits, field effect transistors and gas sensors, due to the excellent photoelectric characteristics. In this work, large-area and high-quality monolayer WSe2 films were prepared by chemical vapor deposition(CVD). The films were characterized by XPS, AFM and Raman. The effects of the distance from substrate to tungsten source and growth temperature on the morphology, size and nucleation density of the samples were investigated. The growth mechanism of WSe2 films with different morphologies was interpreted by different n(W) ∶n(Se)(≫0.5, >0.5, =0.5)from the perspective of crystal growth, which provided a reference for the optimization of the fabrication process of two-dimensional semiconductor monolayer films.
Key words:  tungsten diselenide film    chemical vapor deposition    transition metal sulfur compound    crystal growth
发布日期:  2023-02-08
ZTFLH:  O469  
基金资助: 国家自然科学基金(50901053;51771139)
通讯作者:  *宋述鹏,武汉科技大学副教授。2002年9月至2008年6月,在武汉大学获得凝聚态物理专业博士学位,毕业后在武汉科技大学任教,2018年12月至2019年12月,纽约州立大学布法罗分校访问学者。以第一作者在国内外学术期刊上发表论文40余篇,申请国家发明专利12项,其中授权5项。研究工作主要有金属材料的制备与表征、二维材料的第一性原理计算。主持和参与包括国家自然科学基金面上项目、国家自然科学基金青年项目多项。   
作者简介:  胡冬冬,2019年6月毕业于赣南科技学院,获得工学学士学位。现为武汉科技大学材料与冶金学院硕士研究生。目前主要从事二维薄膜材料WSe2的研究。
引用本文:    
胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
HU Dongdong, SONG Shupeng, LIU Junnan, BI Jiangyuan, DING Xing. CVD Synthesis and Growth Mechanism Study of Monolayer Tungsten Diselenide Films. Materials Reports, 2023, 37(2): 21050222-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050222  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050222
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Cui S, Pu H, Wells S A, et al. Nature Communications, 2015, 6, 8632.
3 Pak Y, Lim N, Kumaresan Y, et al. Advanced Materials, 2016, 27(43), 6945.
4 Neto A, Guinea F, Peres N, et al. Reviews of Modern Physics, 2009, 244(11), 4106.
5 Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699.
6 Whitwick M B, Kis A, Radisavljevic B. ACS Nano, 2011, 5(12), 9934.
7 Li S Z, Huang X, Zhang H, et al. Acta Chimica Sinica, 2015, 73(9), 913(in Chinese).
李绍周, 黄晓, 张华, 等. 化学学报, 2015, 73(9), 913.
8 Geim A K, Novoselov K S. Nature Materials, 2009, 6(12), 11.
9 Coleman J N, Lotya M, O'Neill A, et al. Science, 2011, 331(6017), 568.
10 Li Z H, Luo W K, Yang Q K, et al. Acta Physica Sinica, 2017(10), 229(in Chinese).
李忠辉, 罗伟科, 杨乾坤, 等. 物理学报, 2017(10), 229.
11 Mattevi C, Kim H, Chhowalla M. Journal of Materials Chemistry, 2011, 13(7), 362.
12 Huang J K, Pu J, Hsu C L, et al. ACS Nano, 2014, 8(1), 923.
13 Hu S, Li J, Zhan X Y, et al. Science China Materials, 2020, 63(6), 1065.
14 Pudasaini P R, Stanford M G, Oyedele A. Nano Research, 2017(2), 1.
15 Bhaskaran H, Warner J,Wang S, et al. Chemistry of Materials, 2014, 26(22), 6371.
16 Liu K K, Zhang W, Lee Y H, et al. Nano Letters, 2012, 12(3), 1538.
17 Wang H, Zhu D, Jiang F, et al. Nanotechnology, 2018, 12(3), 126.
18 Corro E D, Terrones H, Elias A, et al. ACS Nano, 2014, 8(9), 9629.
19 Wang H, Zhu D, Jiang F, et al. Nanotechnology, 2018, 29(31), 229.
20 Sun M X, Xie D, Sun Y L, et al. Nanotechnology, 2017, 29(1), 365.
21 Morozov Y V, Kuno M. Applied Physics Letters, 2015, 107(8), 197.
22 Ross J S, Klement P, Jones A M, et al. Nature Nanotechnology, 2014, 9(4), 268.
23 Kang K H, Choi B K, Kim J, et al. New Physics Sae Mulli, 2015, 65(7), 633.
24 Gang H L. Small, 2013, 9(11), 1974.
25 Shtansky D V, Sheveyko A N, Sorokin D I, et al. Surface & Coatings Technology, 2008, 202(24), 5953.
26 Wang S, Pacios M, Bhaskaran H, et al. Nanotechnology, 2016, 27(8), 085604.
27 Fang H,Chuang S, Chang T C, et al. Nano Letters, 2012, 12(7), 3788.
28 Pudasaini P R, Stanford M G, Oyedele A. Nano Research, 2017, 8(2), 1.
29 Chen H, Zhang J C, Liu X T, et al. Acta Physico-Chimica Sinica, 2021, 37(15), 1.
30 Bhaviripudi S, Jia X, Dresselhaus M S, et al. Nano Letters, 2010, 10(10), 4128.
31 Loumagne F, Langlais F, Naslain R. Journal of Crystal Growth, 1995, 155(3-4), 205.
32 Lu C Y, Chen L F, Zhao C N, et al. Materials Science & Technology, 2010(4), 5.
卢翠英, 成来飞, 赵春年, 等. 材料工艺与科学, 2010(4),5.
33 De Yoreo J J, Vekilov P G. Reviews in Mineralogy and Geochemistry, 2003, 54(1), 57.
34 Das S, Chen H Y, Penumatcha A V, et al. Nano Letters, 2013, 13(1), 100.
[1] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[2] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[3] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[4] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[5] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[6] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[7] 余姝君, 田春蓉. 湿气阻隔涂层的研究进展[J]. 材料导报, 2022, 36(13): 20100166-7.
[8] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[9] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[10] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[11] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[12] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[13] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[14] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[15] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed