Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110093-7    https://doi.org/10.11896/cldb.22110093
  多尺度稀土晶体材料及其应用 |
稀土倍半氧化物晶体材料研究进展
刘锋1,†, 陈昆峰2,†, 薛冬峰1,*
1 中国科学院深圳先进技术研究院,多尺度晶体材料研究中心,广东 深圳 518055
2 山东大学新一代半导体材料研究院,晶体材料国家重点实验室,济南250100
Research Progress of the Rare Earth Sesquioxide Crystal Materials
LIU Feng1,†, CHEN Kunfeng2,†, XUE Dongfeng1,*
1 Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
2 State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
下载:  全 文 ( PDF ) ( 5108KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土倍半氧化物晶体是一类非常适合用于超快激光增益介质、磁光介质的材料,人们对其研究始于20世纪20年代,其由于具有高热导率、宽荧光光谱、低声子能量等优点,至今仍然是先进材料领域的研究热点。“如何突破大尺寸晶体材料的制备理论和技术”位列2021年中国科协发布的十大前沿科学问题之首,这也明确了提高大尺寸晶体材料的制备技术是晶体商业应用的关键。材料的结晶本征属性及其晶体质量是多尺度水平上体系不同自由度相互耦合的结果,因此,开发高品质的稀土倍半氧化物材料需要从多尺度水平上研究体系中稀土离子键合、熔体结构演化、晶体生长等多层次多因素问题。本文聚焦在微观尺度上稀土离子电负性的强弱对熔体中阳离子配位数的影响、熔体结构的实验与模拟计算研究以及晶体生长等方面的最新进展。稀土倍半氧化物熔点高(≥2 400 ℃),限制了铱坩埚以及大多数熔体法生长技术的使用,导致英寸级稀土倍半氧化物晶体开发缓慢。采用助溶剂法、热交换法以及设计低熔点组分是制备大尺寸高质量稀土倍半氧化物晶体的研发重点。为了推动稀土倍半氧化物的商业化应用,揭示稀土离子配位结构、熔体结构演化、生长过程中的缺陷形成机制,开发大尺寸晶体生长技术是目前需要亟待解决的关键科学挑战和技术瓶颈。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘锋
陈昆峰
薛冬峰
关键词:  稀土倍半氧化物晶体  计算模拟  晶体生长与制备    
Abstract: Rare earth sesquioxide crystals are very suitable for ultrafast laser gain and magneto-optical medium. Its research began in the 1920s. Because of high thermal conductivity, wide fluorescence spectrum, low phonon energy and other advantages, they're still a research highlight in the field of advanced materials. Ranking first in the top 10 cutting-edge scientific issues issued by the China Association for Science and Technology in 2021, is ‘how to break through the preparation theory and technology of large size crystal materials’. It is clear that improving the preparation technology of large size crystal materials is the key to the commercial application of crystals. The crystalline intrinsic properties and crystal quality of materials are the result of the coupling of multiple degrees of freedom at the multi-scale level. Therefore, it is needed to study the multi-level and multi factor problems of rare earth such as ion bonding, melt structure evolution, crystal growth, etc., in the system at the multi-scale level, for the development of high-quality rare earth sesquioxide materials. In this paper, we focus on the influence of the electronegativity of rare earth ions on the coordination number of cations in the melt at the micro scale, the melt structure researched by the experiment and computational simulation, and the latest progress in crystal growth. The high melting point of rare earth sesquioxide (≥2 400 ℃) are the limits to the use of iridium crucibles and most growth technologies, and it is accordingly slow to develop the rare earth sesquioxide crystals at the inch grade. It is the key point for the preparation of large size and high-quality rare-earth sesquioxide crystals to adopt cosolvent method, heat exchange method and design low melting point components. In order to promote the commercial application of rare earth sesquioxide, revealing the coordination structure of rare earth ions, the evolution of melt structure, the formation mechanism of defects in the growth process, and developing the large-scale crystal growth technology are the key scientific challenges and technical bottlenecks that need to be solved urgently.
Key words:  rare earth sesquioxide crystal    computer simulation    crystal growth and preparation
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O469  
基金资助: 国家自然科学基金青年科学基金(52202012);国家自然科学基金委重点项目(51832007);国际(地区)合作与交流项目(52220105010);国家自然科学基金委中德科学中心2021年度中德合作交流项目 (M-0755);山东省自然科学基金重大基础研究项目(ZR2020ZD35);山东省产业技术研究院研发项目(Z1250020005)
通讯作者:  *df.xue@siat.ac.cn,薛冬峰,博士,中国科学院深圳先进技术研究院多尺度晶体材料研究中心主任,深圳理工大学科研讲席教授。聚焦于电负性新标度理论、大尺寸功能晶体的制备与研究、稀土开发与利用、新能源材料等方面发表论文600余篇,他引10 000余次,撰写专著3部、译著1部。2011年获国家杰出青年科学基金资助。2012年获中科院“百人计划”择优支持。2013年入选科技部创新人才推进计划中青年科技创新领军人才、2016年入选国家“万人计划”科技创新领军人才。国家万人计划科技创新领军人才、国家杰出青年科学基金获得者、中国科学院“百人计划”择优支持者、国家新材料产业发展专家咨询委员会委员、中国建筑材料联合会专家委员会新材料学部委员、英国皇家化学会会士、国际先进材料协会会士。
陈昆峰,山东大学新一代半导体材料研究院教授、博士研究生导师,2014年博士毕业于大连理工大学。目前主要从事多尺度晶体材料生长制备与性能器件研究工作。发表论文100余篇,包括Journal of Rare Earths、Chemistry Frontiers、Dalton Transactions、Advanced Energy Materials等。   
作者简介:  共同第一作者。刘锋,2014年6月、2021年6月分别于湖南科技大学和华东师范大学获物理学理学学士和凝聚态物理理学博士学位。现为中国科学院深圳先进技术研究院材料所博士后,导师为薛冬峰研究员、彭超副研究员。目前主要研究领域为大尺寸晶体生长。目前已经发表论文7篇。
引用本文:    
刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
LIU Feng, CHEN Kunfeng, XUE Dongfeng. Research Progress of the Rare Earth Sesquioxide Crystal Materials. Materials Reports, 2023, 37(3): 22110093-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110093  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110093
1 Xu L L, Sun C T, Xue D F. Journal of the Chinese Society of Rare Earths, 2018, 1(1),1 (in Chinese).
徐兰兰,孙丛婷,薛冬峰.中国稀土学报, 2018, 1 (1), 1.
2 Chen K F, Hu J L, Zhang Y B, et al. Inorganic Chemicals Industry, 2020,52(3), 11(in Chinese).
陈昆峰,胡家乐,张一波, 等. 无机盐工业, 2020, 52 (3), 11.
3 Chen K F, Ma T Y, Wang A L, et al. Inorganic Chemicals Industry, 2021, 53 (12), 1(in Chinese).
陈昆峰,马天宇,王安良, 等. 无机盐工业, 2021, 53 (12), 1.
4 China Association for Science and Technology. Focusing on the Future of Science and Technology: 2021 major scientific problems, engineering and technical problems, China Science and Technology Press, China, 2021(in Chinese).
中国科学技术协会. 面向未来的科技:2021重大科学问题、工程技术难题, 中国科学技术出版社, 2021.
5 Liu F, Chen K F, Peng C, et al. Journal of Synthetic Crystals, 2022, 51(Z1), 1732(in Chinese).
刘锋,陈昆峰,彭超, 等. 人工晶体学报, 2022, 51 (Z1), 1732.
6 Liu F, Chen K F, Peng C, et al. Journal of the Chinese Ceramic Society, 2023, 51(2), 1(in Chinese).
刘锋,陈昆峰,彭超, 等. 硅酸盐学报, 2023, 51(2), 1.
7 Zachariasen W. Zeitschrift fur Physikalische Chemie, 1926, 123U(1), 134.
8 Pauling L. Zeitschrift fur Kristallographie-Crystalline Materials, 1929, 69 (1-6), 415.
9 Gasson D B,Cockayne B. Journal of Materials Science, 1970, 5 (2), 100.
10 Fornasiero L,Mix E,Peters V,et al. Crystal Research and Technology, 1999, 34 (2), 255.
11 Fornasiero L,Mix E,Peters V,et al. Ceramics International, 2000, 26 (6), 589.
12 Petermann K,Fagundes-Peters D,Johannsen J,et al. Journal of Crystal Growth, 2005, 275 (1), 135.
13 Fukabori A,Chani V,Kamada K,et al. Journal of Crystal Growth, 2011, 318 (1), 823.
14 Shi G Q, Xue D F. Chemical Research, 2022, 33 (5), 387(in Chinese).
史国强,薛冬峰.化学研究, 2022, 33 (5), 387.
15 Panling L. The nature of the chemical bond (3rd Ed), Cornell University Press, USA, 1960.
16 Li K Y, Xue D F. Chinese Science Bulletin, 2008, 53(20), 2442(in Chinese).
李克艳,薛冬峰.科学通报, 2008, 53(20), 2442.
17 Parr R G, Donnellly R A, Levy M, et al. Journal of Chemical Physics, 1978, 68(8), 3801.
18 Li K,Xue D. The Journal of Physical Chemistry A, 2006, 110 (39), 11332.
19 Li K,Wang X,Xue D. The Journal of Physical Chemistry A, 2008, 112 (34), 7894.
20 Xue D F, Li K Y, Zhang F F. Progress in Materials Chemistry, East China University of Science and Technology Press, China, 2011, pp.7(in Chinese).
薛冬峰,李克艳,张方方. 材料化学进展, 华东理工大学出版社, 2011, pp.7.
21 Guzik M,Pejchal J,Yoshikawa A,et al. Crystal Growth & Design, 2014, 14 (7), 3327.
22 Hanic F,Hartmanova M,Knab G G,et al. Acta Crystallographica Section B, 1984, 40 (2), 76.
23 Pauling L,Shappell M D. Zeitschriftfür Kristallographie-Crystalline Mate-rials, 1930, 75 (1), 128.
24 Sheldrick G. Acta Crystallographica Section A, 2008, 64 (1), 112.
25 Shankar K,David L P. Journal of Physics: Condensed Matter, 2000, 12 (12), R145.
26 Cristiglio V,Hennet L,Cuello G J,et al. Journal of Non-Crystalline Solids, 2007, 353 (8), 993.
27 Krishnan S,Ansell S,Price D L. Journal of the American Ceramic Society, 1998, 81 (7), 1967.
28 Tosi M P. Annual Review of Physical Chemistry, 1993, 44 (1), 173.
29 Du J C. Journal of the American Ceramic Society, 2009, 92 (1), 87.
30 Belonoshko A B. Geochimica et Cosmochimica Acta, 1994, 58 (19), 4039.
31 Belonoshko A B,Dubrovinsky L S. American Mineralogist,1996, 81 (3-4), 303.
32 Maija M K. Journal of Physics: Condensed Matter, 2000, 12 (13), 2953.
33 Skinner L B,Benmore C J,Weber J K R,et al. Physical Review Letters, 2014, 112 (15), 157801.
34 Pedone A,Malavasi G,Menziani M C,et al. The Journal of Physical Che-mistry B, 2006, 110 (24), 11780.
35 Kramer G J,Farragher N P,van Beest B W H,et al. Physical Review B, 1991, 43 (6), 5068.
36 Belonoshko A B,Gutierrez G,Ahuja R,et al. Physical Review B, 2001, 64 (18), 184103.
37 Allen M P,Tildesley D J. Computer simulation of liquids, Oxford University Press, UK, 2017.
38 Liu F, Peng C, Xue D F,et al. In: 2022 Academic Annual Meeting of China Rare Earth Society, Baotou, Inner Mongolia, China, 2022(in Chinese).
刘锋,彭超,薛冬峰,等. 中国稀土学会2022学术年会, 中国内蒙古包头, 2022.
39 Hennet L,Thiaudière D,Landron C,et al. Nuclear Instruments and Met-hods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 207 (4), 447.
40 Yang Y,Olmsted D L,Asta M,et al. Acta Materialia, 2012, 60 (12), 4960.
41 Kränkel C. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21 (1), 250.
42 Yoshikawa A,Chani V. MRS Bulletin, 2009, 34 (4), 266.
43 Chen G,Li S,Zhang L,et al. Infrared Physics & Technology, 2020, 109, 103431.
44 Veber P,Velázquez M,Jubera V,et al. CrystEngComm, 2011, 13 (16), 5220.
45 Velázquez M,Veber P,Buşe G,et al. Optical Materials, 2015, 39, 258.
46 Veber P,Velázquez M,Gadret G,et al. CrystEngComm, 2015, 17 (3), 492.
47 Heuer A M,von Brunn P,Huber G,et al. Optical Materials Express, 2018, 8 (11), 3447.
48 Yin Y,Wang G,Jia Z,et al. CrystEngComm, 2020, 22 (39), 6569.
49 Zhao H Y, Hou W T, Xue Y Y,et al. Journal of Synthetic Crystals, 2021, 50(4), 732(in Chinese).
赵衡煜,侯文涛,薛艳艳,等. 人工晶体学报, 2021,50 (4), 732.
50 Si X Y, Huang H T, Qian L J, et al. Laser & Optoelectronics Progress,2019, 56 (9), 9(in Chinese).
司晓云,黄海涛,钱丽娟,等. 激光与光电子学进展, 2019, 56 (9), 9.
51 Peters R,Kränkel C,Petermann K,et al. Journal of Crystal Growth, 2008, 310 (7), 1934.
52 Krankel C,Uvarova A,Haurat E,et al. Acta Crystallographica Section B, 2021, 77 (4), 550.
[1] 白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
[2] 米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生. 机器学习技术在材料科学领域中的应用进展[J]. 材料导报, 2021, 35(15): 15115-15124.
[3] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed