Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20070199-7    https://doi.org/10.11896/cldb.20070199
  金属与金属基复合材料 |
沉淀强化高熵合金研究进展
白曦1, 方伟1,2,*, 常若斌1, 于浩洋1, 闫皎辉1, 殷福星1,2,*
1 河北工业大学材料科学与工程学院,能源装备材料技术研究院,天津 300132
2 天津市材料层状复合与界面控制技术重点实验室,天津 300132
Precipitation-strengthening in High Entropy Alloys: a Review
BAI Xi1, FANG Wei1,2,*, CHANG Ruobin1, YU Haoyang1, YAN Jiaohui1, YIN Fuxing1,2,*
1 Key Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
2 Key Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300132, China
下载:  全 文 ( PDF ) ( 5761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金是一类由多种主要元素共同组成的新型金属材料,其具有独特的微观结构和可调性能,在国内外已获得广泛关注。沉淀强化被证明是提高高熵合金屈服强度的一种非常有效的手段,并且沉淀相和基体之间的共格界面对于实现强度和塑性的良好结合非常重要。合理控制沉淀相的类型、形状、大小和体积分数是提高合金强塑性的关键因素。研究证实,采用不同的轧制、退火和时效等热处理工艺可调控合金的基体微观组织、沉淀相特征。沉淀强化高熵合金虽然表现出优异的拉伸性能和热稳定性,但目前对其疲劳、蠕变和氧化行为及相关机理等尚不清晰。因此,应对材料进行综合评价以促进性能优越的高温器件的合理设计和制造。使用计算模拟的方式对沉淀相的元素分布、电子结构、成键状态等内在特性进行量化研究,对沉淀相的演化过程进行针对性的预测和控制,有助于合理设计合金成分体系。本文综述了沉淀强化高熵合金的相形成、力学性能、热稳定性和计算机建模等方面的研究进展,归纳总结了相关问题,对今后设计沉淀强化高熵合金具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白曦
方伟
常若斌
于浩洋
闫皎辉
殷福星
关键词:  高熵合金  沉淀强化  沉淀行为  性能  计算模拟    
Abstract: High entropy alloys (HEAs), as multiple principal element alloys, represent a new field of metallurgy, which has attracted extensive attention due to their unique microstructure and properties. Precipitation strengthening has been proved to be a very effective method to improve the yield strength of HEAs. The coherent interface between the precipitates and the matrix is important in achieving a good combination of strength and ductility. Controlling the type, shape, size and volume fraction of the precipitates is the key factor to improve the strength and ductility of HEAs. It is proved that different heat treatment processes such as rolling, annealing and aging could regulate the matrix microstructure and characteristics of precipitates. Although precipitation-hardened high entropy alloys exhibit excellent tensile properties and thermal stability, their fatigue, creep, oxidation behaviors and related mechanisms are still unclear. Therefore, comprehensive evaluation of materials should be carried out to promote the rational design and manufacture of high-temperature devices with excellent performance. In order to predict and control the evolution process of the precipitates and design the alloy composition system reasonably, an in-depth and quantitative study on the intrinsic properties of the precipitates, such as element distribution, electronic structure and bonding state, is supposed to be carried out by means of calculation and simulation. This paper reviews the progress in phase formation, properties, thermal stability, calculation and simulation of precipitation-hardened HEAs, and summarizes the correlative problems, which is helpful and instructive to design precipitation-hardened HEAs in the future.
Key words:  high entropy alloys    precipitation strengthening    precipitation behavior    property    calculation and simulation
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51701061);河北省自然科学基金(E2019202059)
通讯作者:  * fangwei@hebut.edu.cn;yinfuxing@hebut.edu.cn   
作者简介:  白曦,2018年6月毕业于沈阳航空航天大学,获得工学学士学位。现为河北工业大学硕士研究生,在殷福星教授的指导下进行研究,目前主要研究领域为沉淀强化型高熵合金。2019年以第一作者身份在Materials Science and Engineering: A发表研究论文1篇。
方伟,河北工业大学助理研究员、硕士研究生导师。2008年7月本科毕业于北京科技大学材料科学与工程学院,2014年1月毕业于北京科技大学新材料技术研究院并取得博士学位。主要从事高熵合金的研究工作。近年来,在金属材料领域发表论文30余篇,包括Scripta Materialia、Journal of Materials Science & Technology、Materials Characterization、Materials Science and Engineering: A、Journal of Alloys and Compounds、Powder Technology、Powder Metallurgy等。
殷福星,博士研究生导师,长江学者特聘教授,第六届中国侨界贡献(创新人才)奖获得者。1984年于河北工业大学金属材料专业获学士学位;1987年于河北工业大学金属材料专业获硕士学位;1996年于日本甲南大学应用化学专业获博士学位。在超高强度钢铁材料中利用纤维状细晶组织实现了材料韧性变化的逆温度效应,该工作发表在Science(2008)、同成果获得德国2009年度Gottfried Wagener Prize一等奖。在开发新型高阻尼合金和应用技术等领域发表学术论文30篇;获得和在申请的日本基础专利共8项;研制成功了世界首创的Ti基高阻尼合金,成果发表在Advanced Materials。至今共发表论文200余篇,获得专利12项,参与编著书籍5册,主持多项国家级及省部级重点研发项目。主要研究方向:钢铁等金属结构材料的组织控制和评价技术;钛基高温阻尼合金的机理研究及开发;铁锰硅系形状记忆合金以及锰铜基阻尼合金的工程应用技术研究。
引用本文:    
白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
BAI Xi, FANG Wei, CHANG Ruobin, YU Haoyang, YAN Jiaohui, YIN Fuxing. Precipitation-strengthening in High Entropy Alloys: a Review. Materials Reports, 2022, 36(21): 20070199-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070199  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20070199
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375, 213.
3 Miracle D, Senkov O. Acta Materialia, 2017, 122, 448.
4 Senkov O N, Miller J D, Miracle D B, et al. Nature Communications, 2015, 6, 6529.
5 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
6 Jun D, Qin Y, Mark A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36), 8919.
7 Li Z, Zhao S, Ritchie R O, et al. Progress in Materials Science, 2019, 102, 296.
8 Pickering E, Jones N G. International Materials Reviews, 2016, 61(3), 183.
9 Yeh J W. JOM, 2013, 65(12), 1759.
10 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
11 Miracle D B. Nature Communications, 2019, 10(1), 721.
12 Luan H W, Zhao W, Yao K F. Transactions of Materials and Heat Treatment, 2020, 41(1), 1 (in Chinese).
栾亨伟, 赵威, 姚可夫.材料热处理学报, 2020, 41(1), 1.
13 Cantor B. In:Encyclopedia of materials: science and technology, Buschow K H J, Cahn R W, Flemings M C, et al, ed., Elsevier, Netherlands, 2001, pp. 1.
14 He F, Wang Z, Wu Q, et al. Scripta Materialia, 2017, 131, 42.
15 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Nature Communications, 2016, 7, 10602.
16 Laplanche G, Kostka A, Reinhart C, et al. Acta Materialia, 2017, 128, 292.
17 Ma Y, Yuan F, Yang M, et al. Acta Materialia, 2018, 148, 407.
18 Komarasamy M, Shukla S, Ley N, et al. Materials Science and Enginee-ring: A, 2018, 736, 383.
19 Sun S J, Tian Y Z, An X H, et al. Materials Today Nano, 2018, 4, 46.
20 Sun S J, Tian Y Z, Lin H R, et al. Materials & Design, 2017, 133, 122.
21 Sohn S S, Alisson K D S, Ikeda Y, et al. Advanced Materials, 2019, 31(8), 1807142.
22 Yang T, Zhao Y L, Liu W H, et al. Materials Research Letters, 2018, 6(10), 600.
23 He F, Chen D, Han B, et al. Acta Materialia, 2019, 167, 275.
24 Gwalani B, Gorsse S, Choudhuri D, et al. Acta Materialia, 2018, 153, 169.
25 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
26 Zhao Y L, Yang T, Tong Y, et al. Acta Materialia, 2017, 138, 72.
27 Yang T, Zhao Y L, Tong Y, et al. Science, 2018, 362(6417), 933.
28 Zhao Y Y, Chen H W, Lu Z P, et al. Acta Materialia, 2018, 147, 184.
29 Tong Y, Chen D, Han B, et al. Acta Materialia, 2019, 165, 228.
30 Su J, Raabe D, Li Z. Acta Materialia, 2019, 163, 40.
31 Joseph J, Stanford N, Hodgson P, et al. Journal of Alloys and Compounds, 2017, 726, 885.
32 Qin G, Chen R, Zheng H, et al. Journal of Materials Science & Technology, 2019, 35(4), 578.
33 Liang Y J, Wang L J, Wen Y R, et al. Nature Communications, 2018, 9(1), 299.
34 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
35 Wang Q, Ma Y, Jiang B, et al. Scripta Materialia, 2016, 120, 85.
36 Strutt P R, Polvani R S, Ingram J C. Metallurgical Transactions A, 1976, 7A, 23.
37 He J Y, Wang H, Wu Y, et al. Intermetallics, 2016, 79, 41.
38 Bai X, Fang W, Chang R B, et al. Materials Science and Engineering: A, 2019, 767, 138403.
39 Sundararaman M, Mukhopadhyay P, Banerjee S. Acta Metallurgica, 1988, 36(4), 847.
40 He F, Wang Z J, Wang J, et al. Scripta Materialia, 2018, 146, 281.
41 Du X H, Li W P, Chang H T, et al. Nature Communications, 2020, 11(1), 2390.
42 Liu W H, Lu Z P, He J Y, et al. Acta Materialia, 2016, 116, 332.
43 Fan J T, Zhang L J, Yu P F, et al. Materials Science and Engineering: A, 2018, 728, 30.
44 Ming K S, Bi X F, Wang J. International Journal of Plasticity, 2018, 100, 177.
45 Yang T, Zhao Y L, Fan L, et al. Acta Materialia, 2020, 189, 47.
46 Lifshitz I M, Slyozov V V. Journal of Physics and Chemistry of Solids, 1961, 19(1-2), 35.
47 Wagner C Z, Elektrochem Z. Angewandte Physics and Chemistry, 1961, 65, 581.
48 Zhao Y L, Yang T, Han B, et al. Materials Research Letters, 2019, 7(4), 152.
49 He F, Zhang K W, Yeli G M, et al. Scripta Materialia, 2020, 183, 111.
50 Guo L, Gu J, Gong X, et al. Science China Materials, 2020, 63(2), 288.
51 Detrois M, Jablonski P D, Antonov S, et al. Journal of Alloys and Compounds, 2019, 792, 550.
52 Liu C T. International Materials Reviews, 1984, 29(1), 168.
53 Booth-Morrison C, Mao Z, Noebe R D, et al. Applied Physics Letters, 2008, 93(3), 033103.
54 Tu Y, Mao Z, Seidman D N. Applied Physics Letters, 2012, 101(12), 121910.
55 Xu J H, Lin W, Freeman A J. Physical Review B, 1993, 48(7), 4276.
56 Kresse G, Hafner J. Physical Review B, 1993, 47(1), 558.
57 Cao Y, Zhu J, Liu Y, et al. Physica B: Physics of Condensed Matter, 2013, 412, 45.
58 Han B, Wei J, Tong Y, et al. Scripta Materialia, 2018, 48, 42.
59 Niu M, Zhou G, Wang W, et al. Acta Materialia, 2019, 179, 296.
60 Huang S. Scripta Materialia, 2019, 168, 5.
61 Kim S G, Kim W T. Physical Review: E, 1999, 60(6), 7186.
62 Kim S G, Kim W T, Suzuki T, et al. Journal of Crystal Growth, 2004, 261(1), 135.
63 Song J, Field R, Clarke A, et al. Acta Materialia, 2019, 165, 362.
[1] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[2] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[3] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[4] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[5] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[6] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[7] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[8] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[9] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[10] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[11] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[12] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[13] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[14] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[15] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed