Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5089-5094    https://doi.org/10.11896/cldb.19080205
  无机非金属及其复合材料 |
化学气相沉积法制备高纯硼粉的技术进展
曾静, 胡石林, 吴全峰, 齐鑫, 周文辉
中国原子能科学研究院,北京 102413
A Technological Review of the Preparation of High Purity Boron Powder by Chemical Vapor Deposition
ZENG Jing, HU Shilin, WU Quanfeng, QI Xin, ZHOU Wenhui
China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 2327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高纯硼是高技术和电子信息的重要材料,是军工和高科技不可缺少的一种重要的战略物资。本文阐述了氢和卤化硼、卤化硼及硼烷分别在金属基体表面、硼棒基体表面及采用流化床技术化学气相沉积制备高纯硼粉的几种不同制备方法,分析比较了各方法的优缺点,总结出以硼烷为原料,采用流化床技术可以制备产率高、纯度高的硼粉;探讨了副产物回收方法,并进一步提出将流化床和化学气相沉积技术相结合(FB-CVD),生产高纯硼粉具有高效、经济的特点,并可实现产业化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾静
胡石林
吴全峰
齐鑫
周文辉
关键词:  高纯硼  硼烷  流化床  化学气相沉积    
Abstract: High purity boron is an important material for high-tech and electronic information. It is an important strategic material indispensable for military and high-tech. In this paper, hydrogen and boron halide, boron halide, borane respectively on the surface of metal substrate, boron rod substrate and chemical vapor deposition by fluidized bed technique to prepare boron powder were expounded. The advantages and disadvantages of each method were analyzed and compared. High-yield and high purity boron powder by using borane and introducing fluidized bed technology was prepared. The method of recovery of by-products was discussed, and a method of combing of fluidized bed with chemical vapor deposition (FB-CVD) to produce economic, industrial high purity boron powder was further proposed.
Key words:  high purity boron    borane    fluidized bed    chemical vapor deposition
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TQ128  
通讯作者:  zengjingdeep@163.com   
作者简介:  曾静,2013年6月毕业于湖南大学化学化工学院,获得工学硕士学位。现就职于中国原子能科学研究院,主要从事硼材料研究。
胡石林,中核集团中国原子能院研究室主任,博士研究生导师。主要负责特种材料研究工作。2000年被评为首批中国原子能科学研究院“青年学术带头人”,2009年先后被评为“中央企业劳动模范”、“感动原子科学城”十大人物,2014年被评为“最美中核人”。2015年度评为“全国劳动模范”荣誉称号,入选国家百千万人才工程,同时被授予“有突出贡献中青年专家”荣誉称号。2019年获中核集团“钱三强科技奖”。现任中核集团首席专家。先后负责国际原子能机构项目5项、核能开发项目5项、预研项目5项,在国内外刊物上发表学术论文50余篇,申请多项国家专利。曾获得国家科技进步二等奖;国防科技进步一等奖;中核集团科技进步三等奖;中核集团科技进步一等奖;中核集团重大科技成果奖金奖等一系列奖项。
引用本文:    
曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
ZENG Jing, HU Shilin, WU Quanfeng, QI Xin, ZHOU Wenhui. A Technological Review of the Preparation of High Purity Boron Powder by Chemical Vapor Deposition. Materials Reports, 2021, 35(5): 5089-5094.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080205  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5089
1 Wang J L, Gu Y L, Li Z L, et al. Materials Research Bulletin,2013,48(6),2018.
2 Kim Y K, Chung K, Yoo J, et al. Journal of Alloys and Compounds,2009,485(1-2),L44.
3 Vignolo M, Bovone G, Matera D, et al. Chemical Engineering Journal,2014,256,32.
4 Dou Z H, Zhang T A, Shi G Y. Transactions of Nonferrous Metals Society,2014,24(5),1446.
5 Jain A, Anthonysamy S, Gupta G S, et al. Materials Chemistry and Phy-sics,2013,140(1),335.
6 Jain A, Anthonysamya S, Ananthasivana K, et al. Materials Characte-rizaton,2008,59(7),890.
7 Zhao J, Zhou W H, Liu N, et al. Chemical Industry & Engineering Progress,2017,36(S),319(in Chinese).
赵晶,周文辉,刘念,等.化工进展,2017,36(增刊1),319.
8 Choykl K L. Progress Materials Science,2003,48,570.
9 Mattevi C, Kim H, Chhowalla M. Journal of Materials Chemistry,2011,21(10),3324.
10 Balci Ö, Ağaoğullari D, Duman D. Journal of Nanoscience Nanotech-nology,2011,11,226.
11 Stern D R, Lynds L. Journal of the Electrochemical Society,1958,105(11),676.
12 Shalamberidze S O, Kalandadze G I, Khulelidze D E. Journal of Solid State Chemistry,2000,154(1),199.
13 Talley C P, Line L E, Overman D. In: Proceedings of the conference on boron, boron synthesis, structure, and properties. New Jersey, US,1960,pp.94.
14 Bean K E, Medcalf W E. U.S. patent, US3053636,1962.
15 McCarry L V, Carpenter D R. Journal of the Electrochemical Society,1960,107(1),38.
16 Zheng X J. Boron compound production and application,Chemical Industry Press, China,2008(in Chinese).
郑学家.硼化合物生产与应用,化学工业出版社,2008.
17 Ma J, Richley J C, Davies D, et al. Journal of Physical Chemistry A,2010,114(37),10076.
18 Umemoto H, Kanemitsu T, Tanaka A. Journal of Physical Chemistry A,2014,118(28),5156.
19 Sun B, McKee M L. Inorganic Chemistry,2013,52(10),5962.
20 Attwood M D, Greatrex R, Greenwood N N, et al. Journal Organometallic Chemistry,2000,614-615,144.
21 Söderlund M, Mäki-Arvela P, Eränen K, et al. Catalysis Letters,2005,105(3-4),191.
22 Comerford D W, Cheesman A, Carpenter T, et al. Journal of Physical Chemistry A,2006,110(9),2868.
23 Rice J K, Nelson H H, Caldwell N J. Journal of Physical Chemistry,1989,93(9),3600.
24 Umemoto H, Miyata A. Thin Solid Films,2015,595,231.
25 Zheng X J. New boron-containing material, Chemical Industry Press, China,2010(in Chinese).
郑学家.新型含硼材料,化学工业出版社,2010.
26 Owen A J. Journal Applied Chemistry,1960,10(12),483.
27 Zheng X J. Boron hydride, Chemical Industry Press, China,2011(in Chinese).
郑学家.硼氢化合物,化学工业出版社,2011.
28 Bean K E, Medcalf W E. In: Proceedings of the conference on boron, boron synthesis, structure, and properties. New Jersey, US,1960,pp.57.
29 Liu R Z, Liu M L, Shao Y L, et al. Chemical Industry & Engineering Progress,2016,35(5),1236(in Chinese).
刘荣正,刘马林,邵友林,等.化工进展,2016,35(5),1236.
30 Porter I E, Knight T W, Dulude M C, et al. Nuclear Engineering and Design,2013,259,180.
31 Wen Q, Qian W Z, Nie J Q, et al. Advanced Materials,2010,22(16),1867.
32 Lyubutin I S, Anosova O A, Frolov K V, et al. Carbon,2012,50(7),2628.
33 Balaji S, Du J, White C M, Ydstie B E. Powder Technology,2010,199(1),23.
34 Du J, Duttas S, Ydstie B E. Aiche Journal,2014,60(5),1740.
35 Balaji S, Du J, White C M, et al. Powder Technology,2010,199,23.
36 Li J L, Chen G H, Zhang P, et al. Chinese Journal of Chemical Enginee-ring,2011,19(5),747.
37 Aksoylu A E, Aria J L, Pereira M F, et al. Applied, Catalysis A,2002,243,357.
38 Vanni F, Montaigu M, Caussat B. Chemical Engineering & Technology,2015,38(7),1254.
39 Ph-Rodriguez B, Caussat X I, Ablitzer C, et al. Chemical Engineering Journal,2012,211,68.
40 Hou Y Q, Xie G, Tao D P, et al. Materials Reports A: Review Papers,2010,24(7),31.
候颜青,谢刚,陶东平,等.材料导报:综述篇,2010,24(7),31.
41 Weidhaus D, Hauswirth R, Hertlein H. U.S. patent, US8722141B2,2014.
42 Naslain R, Sou-Pouyalet B, Etourneau J. Materials Research Bulletin,1973,8,825.
43 Allen R H, Ibrahim J. U.S. patent, US5013604,1991.
[1] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[2] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[3] 翟佳欣, 李国华, 甘思平, 胡恩言, 张晓蕊. Mo掺杂对CuCo/BNNSs纳米复合材料催化氨硼烷水解活性的影响[J]. 材料导报, 2020, 34(16): 16031-16036.
[4] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[5] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[6] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[7] 张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
[8] 石晓东, 王伟, 尹强, 李春静. 化学气相沉积制备大面积高质量石墨烯的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 136-142.
[9] 赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
[10] 龙晓阳, 俄松峰, 李朝威, 李涛涛, 吴隽, 姚亚刚. 化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*[J]. 《材料导报》期刊社, 2017, 31(19): 19-27.
[11] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed