Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 136-142    https://doi.org/10.11896/j.issn.1005-023X.2017.03.022
  碳纳米材料 |
化学气相沉积制备大面积高质量石墨烯的研究进展*
石晓东, 王伟, 尹强, 李春静
河北工业大学电子信息工程学院,天津市电子材料与器件重点实验室,天津 300401;
Research Progress of Large-area and High-quality Graphene Prepared by Chemical Vapor Deposition
SHI Xiaodong, WANG Wei, YIN Qiang, LI Chunjing
Tianjin Key Laboratory of Electronic Materials and Device, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401;
下载:  全 文 ( PDF ) ( 1420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是由单层碳原子紧密堆积形成的一种碳质新材料,具有优良的电学、光学、热学及力学等性质。在众多的石墨烯制备方法中,化学气相沉积(Chemical vapor deposition, CVD)最有可能实现大面积、高质量石墨烯的可控制备。综述了CVD方法制备大面积、高质量石墨烯的影响因素,包括衬底、碳源及生长条件(气体流量、生长温度、等离子体功率、生长压强、沉积时间、冷却速率等)。最后展望了CVD方法制备石墨烯的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石晓东
王伟
尹强
李春静
关键词:  石墨烯  化学气相沉积  衬底  碳源  生长条件    
Abstract: Graphene, as a new kind of carbonaceous materials, is formed by the close accumulation of a single layer of carbon atoms. It has many unique properties such as electricity, photology, thermology and mechanics. Among all the methods for preparation of graphene, chemical vapor deposition (CVD) is the most likely to achieve controllable preparation of a large-area and high-qua-lity graphene. In this paper, we mainly overview the influence factors of large-area and high-quality graphene prepared by CVD, including substrate, carbon source and growth conditions (gas flow rate, growth temperature, plasma power, growth pressure, deposition time, cooling rate, etc). Finally, the development direction of the preparation of graphene by CVD method is proposed.
Key words:  graphene    chemical vapor deposition    substrate    carbon source    growth conditions
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB321  
基金资助: *河北省在读研究生创新资助项目(220056);河北省自然科学基金(F2012202075)
作者简介:  石晓东:男,1990年生,硕士研究生,主要研究方向为新型电子材料及器件 E-mail:shixiaodong103@163.com 王伟:通讯作者,男,1976年生,副教授,主要研究方向为半导体器件与物理、电路设计与仿真 E-mail:wangwei@hebut.edu.cn
引用本文:    
石晓东, 王伟, 尹强, 李春静. 化学气相沉积制备大面积高质量石墨烯的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 136-142.
SHI Xiaodong, WANG Wei, YIN Qiang, LI Chunjing. Research Progress of Large-area and High-quality Graphene Prepared by Chemical Vapor Deposition. Materials Reports, 2017, 31(3): 136-142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.022  或          http://www.mater-rep.com/CN/Y2017/V31/I3/136
1 Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater,2007,6(3):183.
2 Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60.
3 Kim J H, Castro E J, Hwang Y G, et al. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)[J]. J Korean Phys Soc,2011,58(1):53.
4 Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and berry′s phase in grapheme[J]. Nature,2005,438(7065):201.
5 Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
6 Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer grapheme[J]. Nano Lett,2008,8(3):902.
7 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
8 Damm C, Nacken T J, Peukert W. Quantitative evaluation of delamination of graphite by wet media milling[J]. Carbon,2015,81:284.
9 Oliveira M H, Schumann T, Gargallo-Caballero R, et al. Mono- and few-layer nanocrystalline graphene grown on Al2O3(0001) by mole-cular beam epitaxy[J]. Carbon,2013,56:339.
10 Yang S B, Yu H J, Shen D. Influence of thermal exfoliation tempe-rature on structure and capacitance properties of graphene[J]. Mater Rev: Res,2015,29(5):22(in Chinese).
杨绍斌,于海晶,沈丁.热剥离温度对石墨烯结构及电性能的影响[J]. 材料导报:研究篇,2015,29(5):22.
11 Wang Y C, Zeng X S, Wei J Q, et al. Preparation and structural characterization of chemically reduced graphene films[J]. Mater Rev: Res,2016, 30(1):46(in Chinese).
王艳春,曾效舒,魏嘉麒,等.化学还原石墨烯薄膜的制备及结构表征[J].材料导报:研究篇,2016,30(1):46.
12 Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic Metals,2015,210:95.
13 Vasic' B, Zurutuza A, Gajic'R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene[J]. Carbon,2016,102:304.
14 Tyurnina A V, Okuno H, Pochet P, et al. CVD graphene recrystallization as a new route to tune graphene structure and properties[J]. Carbon,2016,102:499.
15 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5(8):574.
16 Liu G S, Wang J H, Wong J, et al. The properties of graphene films under different process parameters by MPCVD[J]. Vacuum Cryogenics,2014,20(6):319(in Chinese).
柳国松,汪建华,翁俊,等.MPCVD工艺参数对石墨烯性能影响的研究[J].真空与低温,2014,20(6):319.
17 Kaindl R, Jakopic G, Resel R, et al. Synthesis of graphene-layer nanosheet coatings by PECVD[J]. Mater Today: Proceed,2015,2(8):4247.
18 Wang H, Wang G, Bao P, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. J Am Chem Soc,2012,134(8):3627.
19 Wu Y, Hao Y, Fu M, et al. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene[J]. Nanoscale,2016,8(2):930.
20 Shi Y G, Wang D, Zhang J C, et al. Study on the growth of graphene by chemical vapor deposition method[J]. J Synthetic Cryst,2014,43(7):1620(in Chinese).
史永贵,王东,张进成,等.化学气相沉积法生长石墨烯的研究[J].人工晶体学报,2014,43(7):1620.
21 Hu B S, Wei Z D, Ago H, et al. Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films[J]. Sci China Chem,2014,57(6):895.
22 Feng W, Zhang J H, Yang L Q. Morphology effect of polished copper on the graphene quality by CVD[J]. J Funct Mater,2015,46(1):1129(in Chinese).
冯伟,张建华,杨连乔.抛光铜衬底表面形貌对CVD制备石墨烯的影响[J].功能材料,2015,46(1):1129.
23 Hsieh Y P, Wang Y W, Ting C C, et al. Effect of catalyst morpho-logy on the quality of CVD grown graphene[J]. J Nanomater,2013,2013(6):3437.
24 Reckinger N, Van Hooijdonk E, Joucken F, et al. Anomalous moiré pattern of graphene investigated by scanning tunneling microscopy: Evidence of graphene growth on oxidized Cu(111)[J]. Nano Res,2014,7(1):154.
25 Zhang Y F, Gao T, Zhang Y, et al. Controlled growth of graphene on metal substrates and STM characterizations for microscopic morphologies[J]. Acta Physico-Chimica Sinica,2012,28(10):2456(in Chinese).
张艳锋,高腾,张玉,等.金属衬底上石墨烯的控制生长和微观形貌的STM表征[J].物理化学学报,2012,28(10):2456.
26 Chen T, Dai L. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes[J]. Angew Chem,2015,127(49):15160.
27 Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics[J]. Scientific Reports,2012,2:1.
28 Seah C M, Vigolo B, Chai S P, et al. Sequential synthesis of free-standing high quality bilayer graphene from recycled nickel foil[J]. Carbon,2016,96:268.
29 Zhang Y, Gao T, Xie S, et al. Different growth behaviors of am-bient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study[J]. Nano Res,2012,5(6):402.
30 Othman M, Ritikos R, Hafiz S M, et al. Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Mater Lett,2015,158:436.
31 McNerny D Q, Viswanath B, Copic D, et al. Direct fabrication of graphene on SiO2 enabled by thin film stress engineering[J]. Scientific Reports,2014,4:5049.
32 Chen C Y, Dai D, Chen G X, et al. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD[J]. Appl Surf Sci,2015,346:41.
33 Hu G X, Tang B. The diffusion and deposition mechanism of the three-dimensional graphene networks prepared by chemical vapor deposition[J]. J Eng Thermophys,2013,34(9):1779(in Chinese).
胡国新,唐波.化学气相沉积制备三维石墨烯的扩散沉积机理[J].工程热物理学报,2013,34(9):1779.
34 Cai W, Liu W, Han J, et al. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode[J]. Biosensors Bioelectron,2016,80:118.
35 Min B H, Kim D W, Kim K H, et al. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode[J]. Carbon,2014,80:446.
36 Liu P, Long M S, Li M. Synthesis of large area few-layer graphene through catalysis of Cu-Ni alloy[J]. J Mater Sci Eng,2014,2(5):629(in Chinese).
刘平,龙明生,李铭.铜镍合金催化制备大面积均匀的少层石墨烯[J].材料科学与工程学报,2014,2(5):629.
37 Lee W G, Kim E, Jung J. Fast and simultaneous growth of graphene, intermetallic compounds, and silicate on Cu-Ni alloy foils[J]. Mater Chem Phys,2014,147(3):452.
38 Fu Z, Zhang Y, Yang Z. Growth mechanism and controllable synthesis of graphene on Cu-Ni alloy surface in the initial growth stages[J]. Phys Lett A,2015,379(20):1361.
39 He F, Li K, Xie G, et al. Theoretical insights on the influence of doped Ni in the early stage of graphene growth during the CH4 dissociation on Ni-Cu(111) surface[J]. Appl Catal A,2015,506:1.
40 You J Y, Shen H L, Wu T R, et al. Effect of solid-carbon source temperature on graphene growth by chemical vapor deposition[J]. Chinese J Vacuum Sci Technol,2015,35(1):109(in Chinese).
尤佳毅,沈鸿烈,吴天如,等.固态碳源温度对CVD法生长石墨烯薄膜影响的研究[J]. 真空科学与技术学报,2015,35(1):109.
41 Rao R, Weaver K, Maruyama B. Atmospheric pressure growth and optimization of graphene using liquid-injection chemical vapor deposition[J]. Mater Express,2015,5(6):541.
42 Lisi N, Buonocore F, Dikonimos T, et al. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol[J]. Thin Solid Films,2014,571:139.
43 Ren W J, Zhu Y, Gong T C, et al. Preparation of few-layer graphene with CVD based on ethylene as carbon source[J]. J Funct Mater,2015,46(16):16115(in Chinese).
任文杰,朱永,龚天诚,等.基于乙烯的化学气相沉积法制备少层石墨烯[J].功能材料,2015,46(16):16115.
44 Wassei J K, Mecklenburg M, Torres J A, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: Evidence for bilayer selectivity[J]. Small,2012,8(9):1415.
45 Hu B, Jin Y, Guan D, et al. H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth[J]. J Phys Chem C,2015,119(42):24124.
46 Jin Y, Hu B, Wei Z, et al. Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil[J]. J Mater Chem A, 2014,2(38):16208.
47 Wang Z G, Chen Y F, Li P J, et al. Effects of methane flux on structural and transport properties of CVD-grown graphene films[J]. Vacuum,2012,86(7):895.
48 Zhang X,Wang L,Xin J, et al. Role of hydrogen in graphene chemi-cal vapor deposition growth on a copper surface[J]. J Am Chem Soc,2014,136(8):3040.
49 Regmi M, Chisholm M F, Eres G. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu[J]. Carbon,2012,50(1):134.
50 Chugh S, Mehta R, Lu N, et al. Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD[J]. Carbon,2015,93:393.
51 Munoz R, Gómez-Aleixandre C. Fast and non-catalytic growth of transparent and conductive graphene-like carbon films on glass at low temperature[J]. J Phys D:Appl Phys,2013,47(4):045305.
52 Jafari A, Ghoranneviss M, Hantehzadeh M R, et al. Effect of plasma power on growth of multilayer graphene on copper using plasma enhanced chemical vapour deposition[J]. J Chem Res D: Appl Phys,2016,40(1):40.
53 Ge W, Lv B. Growth of graphene nanostructures on Cu foils[J]. J Mater Sci Eng,2013,31(4):489(in Chinese).
葛雯,吕斌.Cu箔衬底上石墨烯纳米结构制备[J].材料科学与工程学报,2013,31(4):489.
54 Behura S K, Nayak S, Yang Q, et al. Chemical vapor deposited few-layer graphene as an electron field emitter[J]. J Nanosci Nanotech-nol,2016,16(1):287.
55 Gulotty R, Das S, Liu Y, et al. Effect of hydrogen flow during coo-ling phase to achieve uniform and repeatable growth of bilayer graphene on copper foils over large area[J]. Carbon,2014,77:341.
56 Sarno M, Cirillo C, Piscitelli R, et al. A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil[J]. J Molecular Catal,2013,366:303.
57 Fogarassy Z, Rümmeli M H, Gorantla S, et al. Dominantly epitaxial growth of graphene on Ni(111) substrate [J]. Appl Surf Sci,2014,314:490.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[11] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[12] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[15] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed