Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16031-16036    https://doi.org/10.11896/cldb.19080151
  无机非金属及其复合材料 |
Mo掺杂对CuCo/BNNSs纳米复合材料催化氨硼烷水解活性的影响
翟佳欣, 李国华, 甘思平, 胡恩言, 张晓蕊
河北工业大学化工学院,天津 300130
Effect of Mo Doping on the Catalytic Activity of CuCo/BNNSs Nanocomposites for Ammonia Boron Hydrolysis
ZHAI Jiaxin, LI Guohua, GAN Siping, HU Enyan, ZHANG Xiaorui
School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 5219KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用共还原法合成了Mo掺杂的非晶态CuCoMo/氮化硼纳米片(记为CuCoMo/BNNSs)复合催化剂,BNNSs通过聚乙烯吡咯烷酮(PVP)辅助氢氧化钠结晶法剥离获得。通过X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)及选区电子衍射(SAED)等对纳米复合催化剂的结构和形貌进行表征,并考察了Mo掺杂对CuCoMo/BNNSs纳米复合催化剂催化氨硼烷(AB)水解产氢活性的影响。结果表明:Mo作为给电子体将电子转移到CuCo NPs,从而增强了催化剂内部金属间的相互作用,提高了催化剂的催化性能。活性测试表明,非晶态(CuCo)0.85Mo0.15/BNNSs纳米复合催化剂在室温及pH=14条件下对AB水解产氢的催化活性极高,转化频率(TOF)值高达179.17 mol H2·mol-1 metal·min-1,首次证明了非晶态CuCoMo NPs是催化AB水解过程中的关键活性组分。这种电子转移不局限于CuCoMo NPs,可以扩展到 CuCoW (156.77 mol H2·mol-1 metal·min-1)和CuCoCr(125.42 mol H2·mol-1 metal·min-1)NPs。本工作结合表征及实验结果对纳米复合催化剂用于AB水解的催化机理进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟佳欣
李国华
甘思平
胡恩言
张晓蕊
关键词:  氮化硼纳米片  聚乙烯吡咯烷酮(PVP)  钼掺杂  纳米复合催化剂  氨硼烷  产氢    
Abstract: The Mo-doped amorphous CuCoMo/boron nitride nanosheets (donated as CuCoMo/BNNSs) nanocomposite catalyst was synthesized by co-reduction method, and BNNSs were obtained by polyvinylpyrrolidone (PVP) assisted sodium hydroxide crystallization. The structure and morphology of the nanocomposite catalyst were characterized by X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), high resolution transmission electronic microscopy (HRTEM) and selected area electron diffraction (SAED). Due to Mo doping, the effect of CuCoMo/BNNSs’s catalytic activity for ammonia borane (AB) hydrolysis was investigated. The results showed that Mo acts as an electron donor when transferring electrons to CuCo NPs, which enhances the interaction among metals in the catalyst and improves the hydrolysis performance of AB. The activity test showed that the amorphous (CuCo)0.85Mo0.15/BNNSs nanocomposite catalyst had extremely high catalytic activity for hydrolysis of AB under room temperature when pH=14, and the turn over frequency (TOF) value was as high as 179.17 mol H2·mol-1 metal·min-1. It is demonstrated for the first time that amorphous CuCoMo NPs are key active components in the catalytic hydrolysis of AB. This electron transfer is not limited to CuCoMo NPs, but can also be extended to CuCoW (156.77 mol H2·mol-1 metal·min-1) and CuCoCr (125.42 mol H2·mol-1 metal·min-1) NPs. Moreover, the catalytic mechanism of nanocomposite catalysts for AB hydrolysis was analyzed by combining the characte-rization results with experimental results.
Key words:  boron nitride nanosheets    polyvinylpyrrolidone (PVP)    Mo doping    nanocomposite catalyst    ammonia borane    hydrogen production
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  O643  
通讯作者:  ligh@hebut.edu.cn   
作者简介:  翟佳欣,应用化学专业,河北工业大学硕士研究生,主要从事二维材料和催化化学的研究。
李国华,河北工业大学副教授,硕士研究生导师。1994年天津大学材料学院高分子材料专业本科毕业,2004年南开大学高分子化学研究所理学博士研究生毕业。1999年加入河北工业大学化工学院工作至今,主要从事负载型纳米复合材料的制备及应用研究。
引用本文:    
翟佳欣, 李国华, 甘思平, 胡恩言, 张晓蕊. Mo掺杂对CuCo/BNNSs纳米复合材料催化氨硼烷水解活性的影响[J]. 材料导报, 2020, 34(16): 16031-16036.
ZHAI Jiaxin, LI Guohua, GAN Siping, HU Enyan, ZHANG Xiaorui. Effect of Mo Doping on the Catalytic Activity of CuCo/BNNSs Nanocomposites for Ammonia Boron Hydrolysis. Materials Reports, 2020, 34(16): 16031-16036.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080151  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16031
1 Hou C C, Li Q, Wang C, et al. Energy & Environmental Science, DOI:10.1039.C7EE01553D.
2 Kundu D, Chakma S, Pugazhenthi G, et al. Korean Journal of Chemical Engineering, DOI:10.1007/s11814-018-0196-4.
3 Champet S, van den Berg J, Szczesny R, et al. Sustainable Energy & Fuels, DOI:10.1039/c8se00526e.
4 Fu F Y, Wang C L, Wang Q, et al. Journal of the American Chemical Society, DOI:10.1021/jacs.8b06511.
5 Men Y, Su J, Huang C, et al. Chinese Chemical Letters, DOI:10.1016/j.cclet.2018.04.009.
6 Yang L, Cao N, Du C, et al. Materials Letters, 2014, 115, 113.
7 Khalily M A, Eren H, Akbayrak S, et al. Angewandte Chemie International Edition, 2016, 55(40), 12257.
8 Jia H, Chen X, Liu C Y, et al. International Journal of Hydrogen Energy, 2018, 43(27), 12081.
9 Yang K Z, Zhou L Q, Xiong X, et al. Microporous and Mesoporous Materials, 2016, 225, 1.
10 Du Y S, Cao N, Yang L, et al. New Journal of Chemistry, 2013, 37(10), 3035.
11 Yan J M, Wang Z L, Wang H L, et al. Journal of Materials Chemistry, 2012, 22(22), 10990.
12 Song F Z, Zhu Q L, Yang X C, et al. ChemNanoMat, DOI:10.1002/cnma.201600198.
13 Feng K, Zhong J, Zhao B H, et al. Angewandte Chemie International Edition, 2016, 55(39), 11950.
14 Zheng H C, Feng K, Shang Y P, et al. Inorganic Chemistry Frontiers, DOI:10.1039.C8QI00183A.
15 Cheng J, Gu X J, Sheng X L, et al. Journal of Materials Chemistry A, 2016, 4(5), 1887.
16 Yang K K, Yao Q L, Huang W, et al. International Journal of Hydrogen Energy, 2017, 42(10), 6840.
17 Wang H L, Yan J M, Li S J, et al. Journal of Materials Chemistry A, 2015, 3(1), 121.
18 Wang N, Yang G, Wang H X, et al. Materials Today, DOI:10.1016/j.mattod.2018.10.039.
19 Huang C, Chen C, Ye X, et al. Journal of Materials Chemistry A, 2013, 1(39), 192.
20 Laskowski R, Gallauner T, Blaha P, et al. Journal of Physics Condensed Matter, 2009, 21(10), 104210.
21 Neiner D, Karkamkar A, Linehan J C, et al. The Journal of Physical Chemistry C, 2009, 113(3), 1098.
22 Yao Q L, Yang K, Hong X L, et al. Catalysis Science & Technology, DOI:10.1039.C7CY02365K.
23 Zhai J X, Li G H, Gan S P, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(2), 241(in Chinese).
翟佳欣, 李国华, 甘思平, 等.无机化学学报, 2020, 36(2), 241.
24 Li S J, Kang X, Wulan B R, et al. Small Methods, 2018, 2(12),1800250.
25 Li Z, He T, Liu L, et al. Chemical Science, 2017, 8, 781.
26 Cao N, Liu T, Su J, et al. New Journal of Chemistry, 2014, 38(9), 4032.
[1] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[2] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[3] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[4] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[5] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[6] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[7] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[8] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[9] 王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed