Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3304-3308    https://doi.org/10.11896/j.issn.1005-023X.2018.19.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化
魏永生1,王茂森1,康健1,马瑞欣2,韦露1,李建伟1,赵新生1
1 江苏师范大学物理与电子工程学院氢能实验室,徐州 221116;
2 华北科技学院环境工程学院,北京 101601
Preparation of Three-dimensional Nickel Foam Supported Cobalt Catalyst by Electrodeposition and Its Process Optimizatio
WEI Yongsheng1, WANG Maosen1, KANG Jian1, MA Ruixin2, WEI Lu1,
LI Jianwei1, ZHAO Xinsheng1
1 Laboratory of Hydrogen Energy, School of Physics and Electronic Engineering, Jiangsu Normal University,Xuzhou 221116;
2 Department of Environmental Engineering, North China Institute of Science and Technology, Beijing 101601
下载:  全 文 ( PDF ) ( 2301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔泡沫镍具有质轻、比表面积大、渗透性较好等特点,广泛应用于锂电池、超级电容器、燃料电池等新能源材料领域。本工作采用电沉积法在泡沫镍表面负载了非贵金属钴催化剂,通过排水法测试了其硼氢化钠醇解产氢性能。XRD测试结果显示,催化剂活性组分钴呈现α相,从SEM结果可以看出Co/Ni-foam催化剂表面平整、光滑,且具有三维立体结构,有利于催化反应过程中气液两相流动。考察电沉积法过程中电沉积时间、镀液温度、电流密度、镀液浓度等因素对催化剂产氢性能的影响,优化制备工艺。在电沉积时间为1.5 h、镀液温度为40 ℃、电流密度为5 mA/cm2、镀液浓度为50 g/L时,其硼氢化钠醇解产氢速率高达17 685.81 mL·min-1·g-1(Co),在便携式制氢技术中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏永生
王茂森
康健
马瑞欣
韦露
李建伟
赵新生
关键词:  电沉积  硼氢化钠  产氢  醇解    
Abstract: Porous nickel foam possesses the advantages of light weight, large specific surface area, good permeability and so forth, which is widely applied in the field of new energy materials including lithium battery, supercapacitor, fuel cell etc. The nickel foam supported cobalt (Co/Ni-foam) catalyst was synthesized by electrodeposition for alcoholysis of sodium borohydride, and hydrogen generation rate was tested by drainage method. The results of XRD show that the active component cobalt of the Co/Ni-foam ca-talyst was α phase. The SEM images showed the Co/Ni-foam catalyst had a smooth and neat surface, as well as a three-dimensional structure, which was beneficial to the gas-liquid flow during the catalytic reaction. The effects of electrodeposition time, bath tempe-rature, current density and bath concentration on the hydrogen production performance of the catalyst were also investigated, and the preparation conditions were optimized. The hydrogenation rate of the sodium borohydride was about 17 685.81 mL·min-1·g-1(Co), with the electrodeposition time of 1.5 h, the bath temperature of 40 ℃, the current density of 5 mA/cm2, and the bath concentration of 50 g/L. This method present broad application prospects in the portable hydrogen production technology.
Key words:  electrodeposition    sodium borohydride    hydrogen generation    alcoholysis
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TK91  
基金资助: 国家自然科学基金(21606115;21703088;21776119);江苏省自然科学青年基金(BK20140232;BK20160210)
作者简介:  魏永生:男,1984年生,博士,副教授,主要研究方向为燃料电池、化学制氢、电解水制氢催化剂 E-mail:weiys@jsnu.edu.cn;马瑞欣:通信作者,博士,副教授,研究方向为纳米材料 E-mail:maruixin@126.com
引用本文:    
魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
WEI Yongsheng, WANG Maosen, KANG Jian, MA Ruixin, WEI Lu, LI Jianwei, ZHAO Xinsheng. Preparation of Three-dimensional Nickel Foam Supported Cobalt Catalyst by Electrodeposition and Its Process Optimizatio. Materials Reports, 2018, 32(19): 3304-3308.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.003  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3304
1 Wu Guangbo, Liu Jiping, Wang Jun, et al. Research on synthesis and hydrolysis of sodium borohydride[J].Modern Chemical Industry,2007,14(s2):504(in Chinese).
吴光波,刘吉平,王君,等.硼氢化钠的制备方法及水解制氢[J].现代化工,2007,14(s2):504.
2 Wang Zhiyuan, Zhou Jing, Gao Hongtao. Research progress in hydrogen generation by hydrolysis of sodium borohydride[J].Technology & Development of Chemical Industry,2009,38(4):15(in Chinese).
王志远,周晶,高洪涛.硼氢化钠水解制氢研究进展[J].化工技术与开发,2009,38(4):15.
3 Wei Yongsheng, Meng Wei, Wang Yan, et al. Fast hydrogen gene-ration from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts[J].Journal of Hydrogen Energy,2017,42(9):6072.
4 Su C C, Lu M C, Wang S L, et al. Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride[J].RSC Advances,2012,2:2073.
5 Lo C T F, Karan K, Davis B R, Kinetic assessment of catalysts for the methanolysis of sodium borohydride for hydrogen generation[J].Industrial & Engineering Chemistry Research,2009,48(11):5177.
6 Chan-Li Hsueh, Chuh-Yung Chen, Jie-Ren Ku, et al. Simple and fast fabrication of polymer template-Ru com-posite as a catalyst for hydrogen generation from alkaline NaBH4 solution[J].Journal of Power Sources,2008,177(2):485.
7 Palanichamy Krishnan, Tae-Hyun Yang, Won-Yong Lee, et al. PtRu-LiCoO2 an efficient catalyst for hydrogen generation from sodium borohydride solutions[J].Journal of Power Sources,2005,143(1-2):17.
8 Zhao Lin. Hydrogen generation from methanolysis of sodium borohydride and the performance catalysts[D].Qingdao: Qingdao University of Science and Technology,2012(in Chinese).
赵琳.硼氢化钠醇解制氢及其催化剂性能研究[D].青岛:青岛科技大学,2012.
9 Brown H C, Mead E J, Subba Rao B C. A study of solvents for so-dium borohydride and the effect of solvent and the metal ion on borohydride reductions[J].Journal of the American Chemical Society,1955,77(23):6209.
10 Hannauer J, Demirci U B, Pastor G, et al. Hydrogen release through catalyzed methanolysis of solid sodium borohydride[J].Energy & Environmental Science,2010,3(11):1796.
11 Fernandes V R, Pinto A M F R, Rangel C M. Hydrogen production from sodium borohydride in methanol-water mixtures[J].International Journal of Hydrogen Energy,2010,35(18):9862.
12 Wei Yongsheng, Wang Ru, Meng Liyuan, et al. Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co-Mo-B catalyst supported on carbon cloth[J].International Journal of Hydrogen Energy,2017,42(15):9945.
13 Wei Yongsheng, Huang Xingkai, Wang Junyan, et al. Synthesis of bifunctional non-noble monolithic catalyst Co-W-P/carbon cloth for sodium borohydride hydrolysis and reduction of 4-nitrophenol[J].International Journal of Hydrogen Energy,2017,42(41):25860.
14 Wei Yongsheng, Wang Yan, Wei Lu, et al. Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution[J].International Journal of Hydrogen Energy,2018,43(2):592.
15 Ocon J D, Tuan T N, Yi Y, et al. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles[J].Journal of Power Sources,2013,243:444.
[1] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[2] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[3] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[4] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[5] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[6] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[7] 王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed