Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 130-135    https://doi.org/10.11896/j.issn.1005-023X.2017.03.021
  碳纳米材料 |
借助聚合物实现石墨烯转移的技术进展*
张自元, 门传玲, 曹军, 李振鹏, 赵明杰
上海理工大学能源与动力工程学院,上海 200093;
Technological Advances in Realizing Graphene Transfer with the Help of Polymers
ZHANG Ziyuan, MEN Chuanling, CAO Jun, LI Zhenpeng, ZHAO Mingjie
School of Power and Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
下载:  全 文 ( PDF ) ( 1399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高质量、低成本、绿色制备石墨烯及其高效转移技术是促进石墨烯应用和行业发展的关键。目前制备大面积高质量石墨烯的主流方法是基于金属表面催化生长的化学气相沉积法。薄膜转移技术作为连接石墨烯制备和应用的重要桥梁,在实现石墨烯产业化应用中发挥着重要作用。当前石墨烯薄膜的转移技术主要是利用各种聚合物作衬底或支撑材料的直接和间接转移技术。分类介绍了借助单一聚合物转移、复合结构聚合物转移和其他聚合物转移等石墨烯薄膜的转移方法,并对各自的特点进行了分析和总结,比较了各自的优劣势,给出了对应的适用场合。最后展望了石墨烯转移技术的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张自元
门传玲
曹军
李振鹏
赵明杰
关键词:  石墨烯薄膜  化学气相沉积  聚合物  转移技术    
Abstract: High quality, low-cost, green synthesis and high efficiency transfer techniques are significantly important with the development for promoting the application of graphene and the whole graphene related industries. At present, chemical vapor deposition based on catalytic growth on metal surface has become a main method in synthesis of high quality and large area graphene. Film transfer techniques as a bridge connect synthesis and its application is playing an important role in the process of realizing industrialization application of graphene. Nowadays, graphene film transfer techniques are various direct and indirect transfer methods mainly used kinds of polymers as substrates or supporting materials. We introduced graphene transfer methods in single polymer transfer method, polymer of composite structure transfer method and other graphene film transfer methods. Also we made analysis and summary according to the character of each transfer method. The requirements and advantages of each class are described and compared. At the end, the future of graphene transfer technique is briefly introduced.
Key words:  graphene film    chemical vapor deposition    polymer    transfer techniques
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  O484  
  TB33  
基金资助: *上海市自然科学基金(13ZR1428200);上海理工大学国家级项目培育基金(14XPM06)
作者简介:  张自元:男,1989年生,硕士研究生,主要从事石墨烯材料的制备及应用方面的研究 E-mail:2136441094@qq.com 门传玲:通讯作者,女,博士,副教授,主要从事新能源材料方面的研究 E-mail: ryan2054@126.com
引用本文:    
张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
ZHANG Ziyuan, MEN Chuanling, CAO Jun, LI Zhenpeng, ZHAO Mingjie. Technological Advances in Realizing Graphene Transfer with the Help of Polymers. Materials Reports, 2017, 31(3): 130-135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.021  或          http://www.mater-rep.com/CN/Y2017/V31/I3/130
1 Novoselov K S, Geim A K, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666.
2 Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology,2014,9(10):780.
3 Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano,2013,7(4):2898.
4 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
5 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
6 Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett,2008,100(1):016602.
7 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9):351.
8 Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnol,2008,3(8):491.
9 Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192.
10 Ren W, Cheng H M. The global growth of graphene[J]. Nature Nanotechnol,2014,9(10):726.
11 Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature Nanotechnology,2014,9(10):730.
12 Du Yan,Ji Tiezheng,Zhang Jiaoqiang,et al.Preparation and characterization of graphene nanosheets/high density polyethylene conductive composites[J]. J Aeronautical Mater,2013,33(1):68(in Chinese).
杜彦, 季铁正, 张教强, 等. 石墨烯/高密度聚乙烯导电复合材料的制备与表征[J]. 航空材料学报,2013,33(1):68.
13 Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angew Chem Int Ed,2009,48(42):7752.
14 Qian Y, Lu S, Gao F. Preparation of MnO2/graphene composite as electrode material for supercapacitors[J]. J Mater Sci,2011,46(10):3517.
15 Yang X, Niu G, Cao X, et al. The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA[J]. J Mater Chem,2012,22(14):6649.
16 Kim I H, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity[J]. J Polym Sci Part B: Polym Phys,2010,48(8):850.
17 Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators[J]. Appl Phys Lett,2008,93(11):113103.
18 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706.
19 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312.
20 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2008,9(1):30.
21 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnol,2010,5(8):574.
22 Chandrashekar B N, Deng B, Smitha A S, et al. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator[J]. Adv Mater,2015,27(35):5210.
23 Wang Y, Tong S W, Xu X F, et al. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells[J]. Adv Mater,2011,23(13):1514.
24 Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett,2009,9(12):4359.
25 Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene[J]. ACS Nano,2011,5(11):9144.
26 Caldwell J D, Anderson T J, Culbertson J C, et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates[J]. ACS Nano,2010,4(2):1108.
27 Song J, Kam F Y, Png R Q, et al. A general method for transfering graphene onto soft surfaces[J]. Nature Nanotechnol,2013,8(5):356.
28 Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Lett,2010,10(2):490.
29 Shan Z, Li Q, Zhao Z,et al.One-step transfer and doping of large area graphene by ultraviolet curing adhesive[J]. Carbon,2015,84:9.
30 Kim K K, Reina A, Shi Y, et al. Enhancing the conductivity of transparent graphene films via doping[J]. Nanotechnology,2010,21(28):285205.
31 Deng B, Hsu P C, Chen G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-perfor-mance flexible transparent electrodes[J]. Nano Lett,2015,15(6):4206.
32 Man H, Yunlong G, Bin W, et al. Progress in transfer techniques of graphene synthesized by chemical vapor deposition[J].Chemistry,2012,75(11):974(in Chinese).
黄曼,郭云龙,武斌,等.化学气相沉积法合成石墨烯的转移技术研究进展[J].化学通报,2012,75(11):974.
33 Lock E H, Baraket M, Laskoski M, et al. High-quality uniform dry transfer of graphene to polymers[J]. Nano Lett,2011,12(1):102.
34 Park J, Hann S, Lu Y. Synthesis of graphene pattern using laser-induced chemical vapor deposition[C]//SPIE LASE. International Society for Optics and Photonics,2014:896813.
35 Marta B, Leordean C, Istvan T, et al. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films[J]. Appl Surf Sci,2016,363:613.
36 Cai Wei, Wang Cong, Fang Xiaohong, et al. Progress in transfer technologies and related supporting materials for grapheme film synthesized by chemical vapor deposition[J]. Mater Mechanical Eng,2015,39(11):7(in Chinese).
蔡伟, 王聪, 方小红,等.化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展[J].机械工程材料,2015,39(11):7.
37 Fang W, Hsu A L, Song Y, et al. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition[J]. ACS Nano,2014,8(6):6491.
38 Jeong H J, Kim H Y, Jeong S Y, et al. Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly (methylmethacrylate) layers[J]. Carbon,2014,66:612.
39 Martins L G P, Song Y, Zeng T, et al. Direct transfer of graphene onto flexible substrates[J]. Proceedings National Academy Sciences,2013,110(44):17762.
40 Verma V P, Das S, Lahiri I, et al. Large-area graphene on polymer film for flexible and transparent anode in field emission device[J]. Appl Phys Lett,2010,96(20):203108.
41 Wang D Y, Huang I, Ho P H, et al. Clean-lifting transfer of large-area residual-free graphene films[J]. Adv Mater,2013,25(32):4521.
42 Cherian C T, Giustiniano F, Martin-Fernandez I, et al. ‘Bubble-free’ electrochemical delamination of CVD graphene films[J]. Small,2015,11(2):189.
43 Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano,2011,5(9):6916.
44 Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: How clean can it be?[J]. Nano Lett,2011,12(1):414.
45 Suk J W, Lee W H, Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue[J]. Nano Lett,2013,13(4):1462.
46 Her M, Beams R, Novotny L. Graphene transfer with reduced residue[J]. Phys Lett A,2013,377(21):1455.
47 Barin G B, Song Y, de Fátima Gimenez I, et al. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance[J]. Carbon,2015,84:82.
48 Cha S, Cha M, Lee S, et al. Low-temperature, dry transfer-printing of a patterned graphene monolayer[J]. Sci Rep,2015,5:17877.
49 Chen X D, Liu Z B, Zheng C Y, et al. High-quality and efficient transfer of large-area graphene films onto different substrates[J]. Carbon,2013,56:271.
50 Kang J, Shin D, Bae S, et al. Graphene transfer: Key for applications[J]. Nanoscale,2012,4(18):5527.
51 Fechine G J M, Martin-Fernandez I, Yiapanis G, et al. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates[J]. Carbon,2015,83:224.
52 Cai C, Jia F, Li A, et al. Crackless transfer of large-area graphene films for superior-performance transparent electrodes[J]. Carbon,2016,98:457.
53 Hiranyawasit W, Punpattanakul K, Pimpin A, et al. A novel me-thod for transferring graphene onto PDMS[J]. Appl Surf Sci,2015,358:70.
54 Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Adv Mater,2010,22(35):3906.
55 Kang J,Hwang S,Kim J H,et al.Efficient transfer of large-area graphene films onto rigid substrates by hot pressing [J].ACS Nano,2012,6(6):5360.
56 Chen Mu, Yan Yue, Zhang Xiaofeng, et al. Advances in large-area graohene film transfer techniques[J]. J Aeronautical Mater,2015,35(2):1(in Chinese).
陈牧,颜悦,张晓锋,等.大面积石墨烯薄膜转移技术研究进展[J].航空材料学报,2015,35(2):1.
57 Yamada T, Ishihara M, Kim J, et al. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature[J]. Carbon,2012,50(7):2615.
58 Yamada T, Ishihara M, Hasegawa M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition[J]. Thin Solid Films,2013,532:89.
59 Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition[J]. ACS Nano,2014,8(1):950.
60 Hong B H,Ahn J,Kim H K,et al.Roll-to-roll doping method of graphene film, and doped graphene film: US 8926854[P].2015-01-06.
61 Kobayashi T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process[J]. Appl Phys Lett,2013,102(2):023112.
62 Wood J D, Doidge G P, Carrion E A, et al. Annealing free, clean graphene transfer using alternative polymer scaffolds[J]. Nanotechnology,2015,26(5):055302.
63 Lupina G, Kitzmann J, Costina I, et al. Residual metallic contamination of transferred chemical vapor deposited graphene[J]. ACS Nano,2015,9(5):4776.
64 Anagnostopoulos G, Androulidakis C, Koukaras E N, et al. Stress transfer mechanisms at the submicron level for raphene/polymer systems[J]. ACS Appl Mater Interfaces,2015,7(7):4216.
[1] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[2] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[8] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[9] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[10] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[11] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[12] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[13] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[14] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[15] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed