Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 123-129    https://doi.org/10.11896/j.issn.1005-023X.2017.03.020
  碳纳米材料 |
石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法*
尚钰东1,2, 陈秀华1,2, 李绍元3, 马文会3, 王月春1,2, 向富维1,2
1 云南大学材料科学与工程学院,昆明 650091;
2 云南大学物理与天文学院,昆明 650091;
3 昆明理工大学冶金与能源工程学院,真空冶金国家工程实验室,昆明 650093;
Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell
SHANG Yudong1,2, CHEN Xiuhua1,2, LI Shaoyuan3, MA Wenhui3, WANG Yuechun1,2, XIANG Fuwei1,2
1 Faculty of Materials Science and Engineering, Yunnan University, Kunming 650091;
2 Faculty of Physics and Astronomy, Yunnan University, Kunming 650091;
3 National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093;
下载:  全 文 ( PDF ) ( 1688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种新型的零带隙、半金属材料,具有高透光率,良好的电导率,高稳定性及力学性能,可替代传统的ITO用于制备新一代石墨烯/n-Si肖特基结太阳能电池。详细表述了目前石墨烯/n-Si肖特基结太阳能电池的研究进展,重点总结分析了影响石墨烯/n-Si肖特基结太阳能电池性能的原因及相关的优化方法,为将来进一步对石墨烯/n-Si肖特基结太阳能电池的研究与应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚钰东
陈秀华
李绍元
马文会
王月春
向富维
关键词:  石墨烯  肖特基结    太阳能电池    
Abstract: Graphene is a new type zero band gap and semi-metal material. Due to its high transmittance, good electrical conductivity, high stability, mechanical properties and other excellent performance, it could replace the traditional ITO material to prepare the new generation of graphene/n-Si Schottky junction solar cells. In this review the research progress of graphene/n-Si Schottky junction solar cells are described in detail, the reasons for affecting the performance of graphene/n-Si Schottky junction solar cells and the related optimization methods are mainly summarized and analyzed, in order to provide references for the further research and application of graphene/n-Si Schottky junction solar cells in the future.
Key words:  graphene    Schottky junction    silicon    solar cells
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TM914.4  
基金资助: *国家自然科学基金(51504117);高等学校博士学科点专项科研基金(20135314110001);云南省复杂有色金属资源协同创新中心项目(2014XTZS009);云南省复杂有色金属资源清洁利用国家工程实验室开放基金(CNMRCUKF1404)
作者简介:  尚钰东:男,1991年生,硕士研究生,研究方向为石墨烯硅基太阳能电池 陈秀华:通讯作者,女,1973年生,博士,教授,研究方向为光电子信息集成电路布线材料、太阳能级硅电池材料及固体氧化物电池材料 E-mail:chenxh@ynu.edu.cn
引用本文:    
尚钰东, 陈秀华, 李绍元, 马文会, 王月春, 向富维. 石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法*[J]. 《材料导报》期刊社, 2017, 31(3): 123-129.
SHANG Yudong, CHEN Xiuhua, LI Shaoyuan, MA Wenhui, WANG Yuechun, XIANG Fuwei. Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell. Materials Reports, 2017, 31(3): 123-129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.020  或          http://www.mater-rep.com/CN/Y2017/V31/I3/123
1 Lewis N S. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798.
2 Michael Grätzel. Photoelectrochemical cells[J]. Nature,2001,414:338.
3 Fang X S, Wu L M, Hu L F. ZnS nanostructure arrays: A developing material star[J]. Adv Mater,2011,23(5):585.
4 Hovel H J. Semiconductors and semimetals: Solar cells[M]. New York: Academic Press,1975.
5 Johnston K W, Pattantyus-Abraham A G, Clifford J P, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion[J]. Appl Phys Lett,2008,92(15):151115.
6 Liu C Y, Kortshagen U R. A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals[J]. Nanoscale Res Lett,2010,5:1253.
7 Tang J, Wang X H, Brzozowski L, et al. Schottky quantum dot solar cells stable in air under solar illumination[J]. Adv Mater,2010,22(12):1398.
8 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
9 Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett,2011,11(6):2396.
10 Ni G X, Zheng Y, Bae S, et al. Graphene-ferroelectric hybrid structure for flexible transparent electrodes[J]. ACS Nano,2012,6(5):3935.
11 Blake P, Hill E W, Neto A H C, et al. Making graphene visible[J]. Appl Phys Lett,2007,91(6):063124.
12 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
13 Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Rev Mod Phys,2009,81(1):109.
14 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706.
15 Xu D, Yu X, Zuo L, et al. Interface engineering and efficiency improvement of monolayer grapheneesilicon solar cells by inserting an ultra-thin LiF interlayer[J]. RSC Adv,2015,5:46480.
16 Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat Photonics,2010,4:611.
17 Weiss N O, Zhou H, Liao L, et al. Graphene: An emerging electronic material[J]. Adv Mater,2012,24(43):5782.
18 Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501.
19 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312.
20 Reina A, Jia X, Ho J, et al. Few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
21 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5:574.
22 Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon Schottky junction solar cells[J]. Adv Mater,2010,22(25):2743.
23 Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy Environ Sci,2013,6:108.
24 Lin Y X, Xie D, Chen Y, et al. Optimization of graphene/silicon heterojunction solar cells[C]// Conference Record of the IEEE Photovoltaic Specialists Conference. New York,2012:2566.
25 Li Y F, Yang W, Tu Z Q, et al. Schottky junction solar cells based on graphene with different numbers of layers[J]. Appl Phys Lett,2014,104:043903.
26 Wu Y M, Zhang X Z, Jie J S, et al. Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells[J]. J Phys Chem C,2013,117:11968.
27 Geng H, Kim K K, Song C, et al. Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment[J]. J Mater Chem,2008,18:1261.
28 Li X M, Xie D, Park H, et al. Ion doping of graphene for high-efficiency heterojunction solar cells[J]. Nanoscale,2013,5:1945.
29 Li X M, Xie D, Park H, et al. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells[J]. Adv Energy Mater,2013,3(8):1029.
30 Cui T X, Lv R T, Huang Z H, et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping[J]. J Mater Chem A,2013,1:5736.
31 Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 44) [J]. Prog Photovolt Res Appl,2014,22:701.
32 Ho P H, Liou Y T, Chuang C H, et al. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene he-terojunction solar cells[J]. Adv Mater,2015,27(10):1724.
33 Shi Y M, Kim K K, Reina A, et al. Work function engineering of graphene electrode via chemical doping[J]. ACS Nano,2010,4(5):2689.
34 Liu X, Zhang X W, Meng J Y, et al. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid[J]. Appl Phys Lett,2015,106:233901.
35 Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles[J]. Appl Phys Lett,2014,105:183901.
36 Miao X C, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Lett,2012,12(6):2745.
37 Ayhan M E, Kalita G, Kondo M, et al. Photoresponsivity of silver nanoparticles decorated graphene-silicon Schottky junction[J]. RSC Adv,2014,4:26866.
38 Li X, Fan L L, Li Z, et al. Boron doping of graphene for graphene-silicon p-n junction solar cells[J]. Adv Energy Mater,2012,2(4):425.
39 Feng T T, Xie D, Lin Y X, et al. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS[J]. Nanoscale,2012,4:2130.
40 Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. ACS Appl Mater Interfaces,2011,3(3):721.
41 Xie C, Lv P, Nie B, et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cella[J]. Appl Phys Lett,2011,99:133113.
42 Kelzenberg M D, Turner-Evans D B, Kayes B M, et al. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Lett,2008,8(2):710.
43 Zhang X Z, Xie C, Jie J S, et al. High-efficiency graphene/Si na-noarray Schottky junction solar cells via surface modification and graphene doping[J]. J Mater Chem A,2013,1:6593.
44 Xie C, Zhang X J, Ruan K Q, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. J Mater Chem A,2013,1:15348.
45 Feng T T, Xie D, Lin Y X, et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate[J]. Appl Phys Lett,2011,99:233503.
46 Peng L Q,Xu Y,Wu Y,et al.Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small,2005,1(11):1062.
47 Stelzner T, Pietsch M, Andrä1 G, et al. Silicon nanowire-based solar cells[J]. Nanotechnol,2008,19:295203.
48 Sivakov V, Andrä G, Gawlik A, et al. Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters[J]. Nano Lett,2009,9(4):1549.
49 Kayes B M, Zhang L, Twist R, et al. Flexible thin-film tandem solar cells with >30% efficiency[J]. IEEE J Photovoltaics,2014,4(2):729.
50 Garnett E C, Yang P D. Silicon nanowire radial p-n junction solar cells[J]. Am Chem Soc,2008,130(29):9224.
51 Gunawan O, Guha S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells[J]. Energy Mater Solar Cells,2009,93(8):1388.
52 Tian B, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature,2007,449:885.
53 Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Appl Phys Lett,2007,91:233117.
54 Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Lett,2010,10(3):1082.
55 Muskens O L, Rivas J G. Algra R E, et al. Design of light scatte-ring in nanowire materials for photovoltaic applications[J]. Nano Lett,2008,8(9):2638.
56 Xie C, Zhang X Z, Wu Y M, et al. Surface passivation and band engineering: A way toward high efficiency graphene-planar Si solar cells[J]. J Mater Chem A,2013,1:8567.
57 Jiao K J, Wang X L, Wang Y, et al. Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance[J]. J Mater Chem C,2014,2:7715.
58 Song Y, Li X M, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett,2015,15(3):2104.
59 Li R, Di J T, Yong Z H, et al. Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement[J]. J Mater Chem A,2014,2:4140.
60 Li X K, Jung Y, Huang J, et al. Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires[J]. Adv Energy Mater,2014,4(12):1400186.
61 Shi E Z, Zhang L H, Li Z, et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%[J]. Sci Rep,2012,2:884.
62 Wang F J, Kozawa D, Miyauchi Y, et al. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers[J]. Nat Commun,2015,6:6305.
63 Yu H A, Kaneko T, Yoshimura S, et al. The junction characteristics of carbonaceous film/n-type silicon (C/n-Si) layer photovoltaic cell[J]. Appl Phys Lett,1996,69:3042.
64 Shi E Z, Li H B, Yang L, et al. Colloidal antireflection coating improves graphene-silicon solar cells[J]. Nano Lett,2013,13(4):1776.
65 Yavuz S, Kuru C, Choi D, et al. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells[J]. Nanoscale,2016,8:6473.
66 Lancellotti L, Bobeico E, Capasso A, et al. Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells[J]. Solar Energy,2016,127:198.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[3] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[4] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[5] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[10] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[11] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[12] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[13] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[14] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed